Usage
generate.clonal.data(
n = 2e+07,
num.cells.taken.vector = c(2000, 5000, 10000, 20000, 50000, 50000),
read.count.per.replicate.vector = rep(20000, length(num.cells.taken.vector)),
clonal.distribution.power = -sqrt(2),
pcr.noise.type = 'pareto',
pcr.pareto.location = 1,
pcr.pareto.shape = 1,
pcr.lognormal.meanlog = 0,
pcr.lognormal.sdlog = 1)
Arguments
n
The true number of distinct clones in the underlying assemblage
num.cells.taken.vector
A vector specifying the number of cells taken in each independent biological replicate
read.count.per.replicate.vector
A vector of the same length as num.cells.taken.vector, specifying the number of reads generated from each biological replicate, of the same corresponding indices
clonal.distribution.power
The true underlying clonal multinomial distribution is proportional to (1:n)^-clonal.distribution.power
pcr.noise.type
A string denoting the type of PCR noise: either 'pareto' (default), or 'lognormal'. The package author Yi Liu has found anecdotally and empirically that pareto distributions model sequencing amplification bonanzas much better than lognormal distributions.
pcr.pareto.location
The location parameter for the pareto distribution; matters only if the noise type is pareto.
pcr.pareto.shape
The shape parameter for the pareto distribution; matters only if the noise type is pareto.
pcr.lognormal.meanlog
The meanlog parameter for the lognormal distribution; matters only if the nosie type is lognormal
pcr.lognormal.sdlog
The sdlog parameter for the lognormal distribution; matters only if the nosie type is lognormal