Learn R Programming

mBPCR (version 1.26.0)

estGlobParam: Estimate global parameters of copy number data

Description

Function to estimate the global parameters of copy number data: the mean and the variance of the segment levels (called nu and rhoSquare, respectively), the variance of the noise (sigmaSquare). It is possible to choose the estimator of rhoSquare (i.e. either $\hat{\rho}_1^2$ or $\hat{\rho}^2$) and by default $\hat{\rho}_1^2$ is used.

Usage

estGlobParam(y, nu=NULL, rhoSquare=NULL, sigmaSquare=NULL, typeEstRho=1)

Arguments

y
array containing the log2ratio of the copy number data
nu
mean of the segment levels. If nu=NULL, then the algorithm estimates it on the sample.
rhoSquare
variance of the segment levels. If rhoSquare=NULL, then the algorithm estimates it on the sample.
sigmaSquare
variance of the noise. If sigmaSquare=NULL, then the algorithm estimates it on the sample.
typeEstRho
choice of the estimator of rhoSquare. If typeEstRho=1, then the algorithm estimates rhoSquare with $\hat{\rho}_1^2$, while if typeEstRho=0, it estimates rhoSquare with $\hat{\rho}^2$.

Value

A list containing:
nu
rhoSquare
sigmaSquare

References

Rancoita, P. M. V., Hutter, M., Bertoni, F., Kwee, I. (2009). Bayesian DNA copy number analysis. BMC Bioinformatics 10: 10. http://www.idsia.ch/~paola/mBPCR

Examples

Run this code
##import the 10K data of cell line REC  
data(rec10k)
##estimation of all the global parameters (the variance of the segment is estimated with \eqn{\hat{\rho}^2_1})
estGlobParam(rec10k$log2ratio)

Run the code above in your browser using DataLab