JS(X, var)
JSshrinker(X, df, meanlog, varlog)
buildtree(ct, binstr, depth, parent, idx.node, idx.leave)
calPval(fstar, fobs, pool)
calVolcanoXval(matestobj)
caldf(model, term)
check.confounding(model, term1, term2)
checkContrast(model, term, Contrast)
cluster2num(clust)
consensus.hc(macluster, level, draw)
consensus.kmean(macluster, level, draw)
dist.cor(x)
findgroup(varid, ndye)
getPval.volcano(matestobj, method, idx)
glowess(object, method, f, iter, degree, draw)
intprod(terms, intterm)
linlog(object, cg, cr, draw)
linlog.engine(data, cutoff)
linlogshift(object, lolim, uplim, cg, cr, n.bin, draw)
locateTerm(labels, term)
make.ratio(object, norm.std=TRUE)
makeAB(ct, coord, treeidx, startx, maxdepth)
makeCompMat(n)
makeD(s20, dimZ)
makeDesign(design)
makeHq(s20, y, X, Z, Zi, ZiZi, dim, b, method)
makeShuffleGroup(sample.mtx, ndye, narray)
makeZiZi(Z, dimZ)
makelevel(model, term)
matest.engine(anovaobj, term, mv, test.method, Contrast, is.ftest, partC, verbose=FALSE)
matest.perm(n.perm, FobsObj, data, model, term, Contrast, mv, is.ftest, partC, MME.method, test.method, shuffle.method, pool.pval, ngenes)
meanvarlog(df)
"plot"(x, title, ...)
"plot"(x, ...)
"print"(x, ...)
"print"(x, ...)
ratioVarplot(logsum, logdiff, n)
rlowess(object, method, grow, gcol, f, iter, degree, draw)
shift(object, lolim, uplim, draw)
shuffle.maanova(data, model, term)
solveMME(s20, dim, XX, XZ, ZZ, a)
"summary"(object, ...)
"summary"(object, ...)
volcano.ftest(matestobj, threshold, method, title,highlight.flag)
volcano.ttest(matestobj, threshold, method, title,highlight.flag, onScreen)
matsort(mat, index=1)
repmat(mat, n.row, n.col, ...)
zeros(dim)
ones(dim)
blkdiag(...)
rowmax(x)
rowmin(x)
colmax(x)
colmin(x)
sumrow(x)
matrank(X)
norm(X)
mixed(y, X, Z, XX, XZ, ZZ, Zi, ZiZi, dimZ, s20, method = c("noest", "MINQE-I", "MINQE-UI", "ML", "REML"), maxiter = 100)
parseformula(formula, random, covariate)
makeContrast(model, term)
pinv(X, tol)
fdr(p, method = c("stepup", "adaptive", "stepdown", 'jsFDR'))
# for matsort
a<-matrix(c(1,6,4,3,5,2),2,3)
matsort(a,1)
matsort(a,2)
# for ones and zeros
ones(c(2,2))
zeros(c(2,3,2))
# for repmat
a<-c(1,2)
repmat(a,2,1)
a<-matrix(1:4,2,2)
repmat(a,1,2)
# for blkdiag
a<-matrix(1:4,2,2)
b<-matrix(3:6,2,2)
blkdiag(a,b)
blkdiag(a,b,c(1,2))
# others examples are omitted
Run the code above in your browser using DataLab