cia
of 2 datasets where
covariance between groups or classes of cases, rather than individual cases are maximised.
bet.coinertia(df1, df2, fac1, fac2, cia.nf = 2, type = "nsc", ...)
matrix
, data.frame
,
ExpressionSet
or
marrayRaw-class
.
If the input is gene expression data in a matrix
or data.frame
. The
rows and columns are expected to contain the variables (genes) and cases (array samples)
respectively.
matrix
, data.frame
,
ExpressionSet
or
marrayRaw-class
.
If the input is gene expression data in a matrix
or data.frame
. The
rows and columns are expected to contain the variables (genes) and cases (array samples)
respectively.factor
or vector
which describes the classes in df1.factor
or vector
which describes the classes in df2.bet.cia
of length 5dudi
. See
coinertia
dudi
,
dudi.pca
or
dudi.nsc
dudi
,
dudi.pca
or
dudi.nsc
dudi
,
bga
or bca
dudi
,
bga
or bca
.coinertia
, cia
.### NEED TO DO
if (require(ade4, quiet = TRUE)) {}
Run the code above in your browser using DataLab