ord(dataset, type="coa", classvec=NULL,ord.nf=NULL, trans=FALSE, ...)
"plot"(x, axis1=1, axis2=2, arraycol=NULL, genecol="gray25", nlab=10, genelabels= NULL, arraylabels=NULL,classvec=NULL, ...)
matrix
, data.frame
,
ExpressionSet
or
marrayRaw-class
.
If the input is gene expression data in a matrix
or data.frame
. The
rows and columns are expected to contain the variables (genes) and cases (array samples)
respectively.
factor
or vector
which describes the classes in the training dataset.FALSE
.ord
. The output from ord
. It contains the projection coordinates from ord
,
the \$co or \$li coordinates to be plotted.getcol
, for each classes
of cases (microarray samples) on the array (case) plot. genecol is the colour of the
points for each variable (genes) on gene plot.genelabels=NULL
the row.names
of input matrix dataset
will be used.arraylabels=NULL
the col.names
of input matrix dataset
will be used.ord
containing:dudi
)factor
or vector
which described the classes in the input dataset. Can be NULL.ord
calls either dudi.pca
, dudi.coa
or dudi.nsc
on the input dataset. The input format of the dataset
is verified using array2ade4
. If the user defines microarray sample groupings, these are colours on plots produced by plot.ord
.
Plotting and visualising bga results:
2D plots:
plotarrays
to draw an xy plot of cases (\$ls).
plotgenes
, is used to draw an xy plot of the variables (genes).
3D plots:
3D graphs can be generated using do3D
and html3D
.
html3D
produces a web page in which a 3D plot can be interactively rotated, zoomed,
and in which classes or groups of cases can be easily highlighted.
1D plots, show one axis only:
1D graphs can be plotted using graph1D
. graph1D
can be used to plot either cases (microarrays) or variables (genes) and only requires
a vector of coordinates (\$li, \$co)
Analysis of the distribution of variance among axes:
The number of axes or principal components from a ord
will equal nrow
the number of rows, or the
ncol
, number of columns of the dataset (whichever is less).
The distribution of variance among axes is described in the eigenvalues (\$eig) of the ord
analysis.
These can be visualised using a scree plot, using scatterutil.eigen
as it done in plot.ord
.
It is also useful to visualise the principal components from a using a ord
or principal components analysis
dudi.pca
, or correspondence analysis dudi.coa
using a
heatmap. In MADE4 the function heatplot
will plot a heatmap with nicer default colours.
Extracting list of top variables (genes):
Use topgenes
to get list of variables or cases at the ends of axes. It will return a list
of the top n variables (by default n=5) at the positive, negative or both ends of an axes.
sumstats
can be used to return the angle (slope) and distance from the origin of a list of
coordinates.
dudi.pca
, dudi.coa
or dudi.nsc
, bga
,
data(khan)
if (require(ade4, quiet = TRUE)) {
khan.coa<-ord(khan$train, classvec=khan$train.classes, type="coa")
}
khan.coa
plot(khan.coa, genelabels=khan$annotation$Symbol)
plotarrays(khan.coa)
# Provide a view of the first 5 principal components (axes) of the correspondence analysis
heatplot(khan.coa$ord$co[,1:5], dend="none",dualScale=FALSE)
Run the code above in your browser using DataLab