Learn R Programming

mapfit (version 1.0.0)

mapfit.point: MAP fitting with point data

Description

Estimates MAP parameters from point data.

Usage

mapfit.point(map, x, intervals, ...)

Value

Returns a list with components, which is an object of S3 class mapfit.result;

model

an object for estimated PH class.

llf

a value of the maximum log-likelihood.

df

a value of degrees of freedom of the model.

aic

a value of Akaike information criterion.

iter

the number of iterations.

convergence

a logical value for the convergence of estimation algorithm.

ctime

computation time (user time).

data

an object for data class

aerror

a value of absolute error for llf at the last step of algorithm.

rerror

a value of relative error for llf at the last step of algorithm.

options

a list of options used for fitting.

call

the matched call.

Arguments

map

An object for MAP. The estimation algorithm is selected depending on this class.

x

A vector for point data.

intervals

A vector for intervals.

...

Further options for fitting methods.

Examples

Run this code
## load trace data
data(BCpAug89)
BCpAug89s <- head(BCpAug89, 50)

## MAP fitting for general MAP
(result1 <- mapfit.point(map=map(2), x=cumsum(BCpAug89s)))

## MAP fitting for MMPP
(result2 <- mapfit.point(map=mmpp(2), x=cumsum(BCpAug89s)))

## MAP fitting for ER-HMM
(result3 <- mapfit.point(map=erhmm(3), x=cumsum(BCpAug89s)))

## marginal moments for estimated MAP
map.mmoment(k=3, map=result1$model)
map.mmoment(k=3, map=result2$model)
map.mmoment(k=3, map=result3$model)

## joint moments for estimated MAP
map.jmoment(lag=1, map=result1$model)
map.jmoment(lag=1, map=result2$model)
map.jmoment(lag=1, map=result3$model)

## lag-k correlation
map.acf(map=result1$model)
map.acf(map=result2$model)
map.acf(map=result3$model)

Run the code above in your browser using DataLab