Learn R Programming

maptools (version 1.1-6)

sun-methods: Methods for sun ephemerides calculations

Description

Functions for calculating sunrise, sunset, and times of dawn and dusk, with flexibility for the various formal definitions. They use algorithms provided by the National Oceanic & Atmospheric Administration (NOAA).

Usage

# S4 method for SpatialPoints,POSIXct
crepuscule(crds, dateTime, solarDep, direction=c("dawn", "dusk"),
           POSIXct.out=FALSE)
# S4 method for matrix,POSIXct
crepuscule(crds, dateTime,
           proj4string=CRS("+proj=longlat +datum=WGS84"), solarDep,
           direction=c("dawn", "dusk"), POSIXct.out=FALSE)
# S4 method for SpatialPoints,POSIXct
sunriset(crds, dateTime, direction=c("sunrise", "sunset"),
         POSIXct.out=FALSE)
# S4 method for matrix,POSIXct
sunriset(crds, dateTime,
         proj4string=CRS("+proj=longlat +datum=WGS84"),
         direction=c("sunrise", "sunset"), POSIXct.out=FALSE)
# S4 method for SpatialPoints,POSIXct
solarnoon(crds, dateTime, POSIXct.out=FALSE)
# S4 method for matrix,POSIXct
solarnoon(crds, dateTime,
          proj4string=CRS("+proj=longlat +datum=WGS84"),
          POSIXct.out=FALSE)
# S4 method for SpatialPoints,POSIXct
solarpos(crds, dateTime, ...)
# S4 method for matrix,POSIXct
solarpos(crds, dateTime,
         proj4string=CRS("+proj=longlat +datum=WGS84"), ...)

Value

crepuscule, sunriset, and solarnoon return a numeric vector with the time of day at which the event occurs, expressed as a fraction, if POSIXct.out is FALSE; otherwise they return a data frame with both the fraction and the corresponding POSIXct date and time.

solarpos returns a matrix with the solar azimuth (in degrees from North), and elevation.

Arguments

crds

a SpatialPoints or matrix object, containing x and y coordinates (in that order).

dateTime

a POSIXct object with the date and time associated to calculate ephemerides for points given in crds.

solarDep

numeric vector with the angle of the sun below the horizon in degrees.

direction

one of "dawn", "dusk", "sunrise", or "sunset", indicating which ephemerides should be calculated.

POSIXct.out

logical indicating whether POSIXct output should be included.

proj4string

string with valid projection string describing the projection of data in crds.

...

other arguments passed through.

Warning

Compared to NOAA's original Javascript code, the sunrise and sunset estimates from this translation may differ by +/- 1 minute, based on tests using selected locations spanning the globe. This translation does not include calculation of prior or next sunrises/sunsets for locations above the Arctic Circle or below the Antarctic Circle.

Author

Sebastian P. Luque spluque@gmail.com, translated from Greg Pelletier's gpel461@ecy.wa.gov VBA code (available from https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Models-tools-for-TMDLs), who in turn translated it from original Javascript code by NOAA (see Details). Roger Bivand roger.bivand@nhh.no adapted the code to work with sp classes.

Details

NOAA used the reference below to develop their Sunrise/Sunset

https://gml.noaa.gov/grad/solcalc/sunrise.html and Solar Position

https://gml.noaa.gov/grad/solcalc/azel.html Calculators. The algorithms include corrections for atmospheric refraction effects.

Input can consist of one location and at least one POSIXct times, or one POSIXct time and at least one location. solarDep is recycled as needed.

Do not use the daylight savings time zone string for supplying dateTime, as many OS will not be able to properly set it to standard time when needed.

References

Meeus, J. (1991) Astronomical Algorithms. Willmann-Bell, Inc.

Examples

Run this code
## Location of Helsinki, Finland, in decimal degrees,
## as listed in NOAA's website
hels <- matrix(c(24.97, 60.17), nrow=1)
Hels <- SpatialPoints(hels, proj4string=CRS("+proj=longlat +datum=WGS84"))
d041224 <- as.POSIXct("2004-12-24", tz="EET")
## Astronomical dawn
crepuscule(hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
## Nautical dawn
crepuscule(hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
## Civil dawn
crepuscule(hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
solarnoon(hels, d041224, POSIXct.out=TRUE)
solarnoon(Hels, d041224, POSIXct.out=TRUE)
solarpos(hels, as.POSIXct(Sys.time(), tz="EET"))
solarpos(Hels, as.POSIXct(Sys.time(), tz="EET"))
sunriset(hels, d041224, direction="sunrise", POSIXct.out=TRUE)
sunriset(Hels, d041224, direction="sunrise", POSIXct.out=TRUE)
## Using a sequence of dates
Hels_seq <- seq(from=d041224, length.out=365, by="days")
up <- sunriset(Hels, Hels_seq, direction="sunrise", POSIXct.out=TRUE)
down <- sunriset(Hels, Hels_seq, direction="sunset", POSIXct.out=TRUE)
day_length <- down$time - up$time
plot(Hels_seq, day_length, type="l")

## Using a grid of spatial points for the same point in time
if (FALSE) {
grd <- GridTopology(c(-179,-89), c(1,1), c(359,179))
SP <- SpatialPoints(coordinates(grd),
                    proj4string=CRS("+proj=longlat +datum=WGS84"))
wint <- as.POSIXct("2004-12-21", tz="GMT")
win <- crepuscule(SP, wint, solarDep=6, direction="dawn")
SPDF <- SpatialGridDataFrame(grd,
 proj4string=CRS("+proj=longlat +datum=WGS84"),
 data=data.frame(winter=win))
image(SPDF, axes=TRUE, col=cm.colors(40))
}

Run the code above in your browser using DataLab