This function plots marginal effects (y-axis) against values of predictor(s) variable(s) (x-axis and colors). This is especially useful in models with interactions, where the values of marginal effects depend on the values of "condition" variables.
plot_cme(
model,
effect = NULL,
condition = NULL,
type = "response",
vcov = NULL,
conf_level = 0.95,
draw = TRUE,
...
)
A ggplot2
object
Model object
Name of the variable whose marginal effect we want to plot on the y-axis
String or vector of two strings. The first is a variable name to be displayed on the x-axis. The second is a variable whose values will be displayed in different colors. Other numeric variables are held at their means. Other categorical variables are held at their modes.
string indicates the type (scale) of the predictions used to
compute marginal effects or contrasts. This can differ based on the model
type, but will typically be a string such as: "response", "link", "probs",
or "zero". When an unsupported string is entered, the model-specific list of
acceptable values is returned in an error message. When type
is NULL
, the
default value is used. This default is the first model-related row in
the marginaleffects:::type_dictionary
dataframe.
Type of uncertainty estimates to report (e.g., for robust standard errors). Acceptable values:
FALSE: Do not compute standard errors. This can speed up computation considerably.
TRUE: Unit-level standard errors using the default vcov(model)
variance-covariance matrix.
String which indicates the kind of uncertainty estimates to return.
Heteroskedasticity-consistent: "HC"
, "HC0"
, "HC1"
, "HC2"
, "HC3"
, "HC4"
, "HC4m"
, "HC5"
. See ?sandwich::vcovHC
Heteroskedasticity and autocorrelation consistent: "HAC"
Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
Other: "NeweyWest"
, "KernHAC"
, "OPG"
. See the sandwich
package documentation.
One-sided formula which indicates the name of cluster variables (e.g., ~unit_id
). This formula is passed to the cluster
argument of the sandwich::vcovCL
function.
Square covariance matrix
Function which returns a covariance matrix (e.g., stats::vcov(model)
)
numeric value between 0 and 1. Confidence level to use to build a confidence interval.
TRUE
returns a ggplot2
plot. FALSE
returns a data.frame
of the underlying data.
Additional arguments are passed to the predict()
method
supplied by the modeling package.These arguments are particularly useful
for mixed-effects or bayesian models (see the online vignettes on the
marginaleffects
website). Available arguments can vary from model to
model, depending on the range of supported arguments by each modeling
package. See the "Model-Specific Arguments" section of the
?marginaleffects
documentation for a non-exhaustive list of available
arguments.
Other plot:
plot.marginaleffects()
,
plot_cap()
,
plot_cco()
mod <- lm(mpg ~ hp * wt, data = mtcars)
plot_cme(mod, effect = "hp", condition = "wt")
mod <- lm(mpg ~ hp * wt * am, data = mtcars)
plot_cme(mod, effect = "hp", condition = c("wt", "am"))
Run the code above in your browser using DataLab