cplot(object, ...)# S3 method for lm
cplot(object, x = attributes(terms(object))[["term.labels"]][1L],
dx = x, what = c("prediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L,
xvals = prediction::seq_range(data[[x]], n = n), level = 0.95,
draw = TRUE, xlab = x, ylab = if (match.arg(what) == "prediction")
paste0("Predicted value") else paste0("Marginal effect of ", dx),
xlim = NULL, ylim = NULL, lwd = 1L, col = "black", lty = 1L,
se.type = c("shade", "lines", "none"), se.col = "black",
se.fill = grDevices::gray(0.5, 0.5), se.lwd = lwd, se.lty = if
(match.arg(se.type) == "lines") 1L else 0L, factor.lty = 0L,
factor.pch = 19L, factor.col = se.col, factor.fill = factor.col,
factor.cex = 1L, xaxs = "i", yaxs = xaxs, las = 1L, scatter = FALSE,
scatter.pch = 19L, scatter.col = se.col, scatter.bg = scatter.col,
scatter.cex = 0.5, rug = TRUE, rug.col = col, rug.size = -0.02, ...)
# S3 method for clm
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L, xvals = seq_range(data[[x]], n
= n), level = 0.95, draw = TRUE, xlab = x, ylab = if (match.arg(what)
== "effect") paste0("Marginal effect of ", dx) else paste0("Predicted value"),
xlim = NULL, ylim = if (match.arg(what) %in% c("prediction",
"stackedprediction")) c(0, 1.04) else NULL, lwd = 1L, col = "black",
lty = 1L, factor.lty = 1L, factor.pch = 19L, factor.col = col,
factor.fill = factor.col, factor.cex = 1L, xaxs = "i", yaxs = xaxs,
las = 1L, scatter = FALSE, scatter.pch = 19L,
scatter.col = factor.col, scatter.bg = scatter.col, scatter.cex = 0.5,
rug = TRUE, rug.col = col, rug.size = -0.02, ...)
# S3 method for glm
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "effect"), data = prediction::find_data(object),
type = c("response", "link"), vcov = stats::vcov(object), at, n = 25L,
xvals = prediction::seq_range(data[[x]], n = n), level = 0.95,
draw = TRUE, xlab = x, ylab = if (match.arg(what) == "prediction")
paste0("Predicted value") else paste0("Marginal effect of ", dx),
xlim = NULL, ylim = NULL, lwd = 1L, col = "black", lty = 1L,
se.type = c("shade", "lines", "none"), se.col = "black",
se.fill = grDevices::gray(0.5, 0.5), se.lwd = lwd, se.lty = if
(match.arg(se.type) == "lines") 1L else 0L, factor.lty = 0L,
factor.pch = 19L, factor.col = se.col, factor.fill = factor.col,
factor.cex = 1L, xaxs = "i", yaxs = xaxs, las = 1L, scatter = FALSE,
scatter.pch = 19L, scatter.col = se.col, scatter.bg = scatter.col,
scatter.cex = 0.5, rug = TRUE, rug.col = col, rug.size = -0.02, ...)
# S3 method for loess
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "effect"), data = prediction::find_data(object),
type = c("response", "link"), vcov = stats::vcov(object), at, n = 25L,
xvals = prediction::seq_range(data[[x]], n = n), level = 0.95,
draw = TRUE, xlab = x, ylab = if (match.arg(what) == "prediction")
paste0("Predicted value") else paste0("Marginal effect of ", dx),
xlim = NULL, ylim = NULL, lwd = 1L, col = "black", lty = 1L,
se.type = c("shade", "lines", "none"), se.col = "black",
se.fill = grDevices::gray(0.5, 0.5), se.lwd = lwd, se.lty = if
(match.arg(se.type) == "lines") 1L else 0L, factor.lty = 0L,
factor.pch = 19L, factor.col = se.col, factor.fill = factor.col,
factor.cex = 1L, xaxs = "i", yaxs = xaxs, las = 1L, scatter = FALSE,
scatter.pch = 19L, scatter.col = se.col, scatter.bg = scatter.col,
scatter.cex = 0.5, rug = TRUE, rug.col = col, rug.size = -0.02, ...)
# S3 method for polr
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L, xvals = seq_range(data[[x]], n
= n), level = 0.95, draw = TRUE, xlab = x, ylab = if (match.arg(what)
== "effect") paste0("Marginal effect of ", dx) else paste0("Predicted value"),
xlim = NULL, ylim = if (match.arg(what) %in% c("prediction",
"stackedprediction")) c(0, 1.04) else NULL, lwd = 1L, col = "black",
lty = 1L, factor.lty = 1L, factor.pch = 19L, factor.col = col,
factor.fill = factor.col, factor.cex = 1L, xaxs = "i", yaxs = xaxs,
las = 1L, scatter = FALSE, scatter.pch = 19L,
scatter.col = factor.col, scatter.bg = scatter.col, scatter.cex = 0.5,
rug = TRUE, rug.col = col, rug.size = -0.02, ...)
# S3 method for multinom
cplot(object,
x = attributes(terms(object))[["term.labels"]][1L], dx = x,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
data = prediction::find_data(object), type = c("response", "link"),
vcov = stats::vcov(object), at, n = 25L, xvals = seq_range(data[[x]], n
= n), level = 0.95, draw = TRUE, xlab = x, ylab = if (match.arg(what)
== "effect") paste0("Marginal effect of ", dx) else paste0("Predicted value"),
xlim = NULL, ylim = if (match.arg(what) %in% c("prediction",
"stackedprediction")) c(0, 1.04) else NULL, lwd = 1L, col = "black",
lty = 1L, factor.lty = 1L, factor.pch = 19L, factor.col = col,
factor.fill = factor.col, factor.cex = 1L, xaxs = "i", yaxs = xaxs,
las = 1L, scatter = FALSE, scatter.pch = 19L,
scatter.col = factor.col, scatter.bg = scatter.col, scatter.cex = 0.5,
rug = TRUE, rug.col = col, rug.size = -0.02, ...)