cplot(object, ...)# S3 method for default
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = prediction::seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "prediction") paste0("Predicted value") else
    paste0("Marginal effect of ", dx),
  xlim = NULL,
  ylim = NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  se.type = c("shade", "lines", "none"),
  se.col = "black",
  se.fill = grDevices::gray(0.5, 0.5),
  se.lwd = lwd,
  se.lty = if (match.arg(se.type) == "lines") 1L else 0L,
  factor.lty = 0L,
  factor.pch = 19L,
  factor.col = se.col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = se.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)
# S3 method for clm
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "classprediction", "stackedprediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "effect") paste0("Marginal effect of ", dx) else
    paste0("Predicted value"),
  xlim = NULL,
  ylim = if (match.arg(what) %in% c("prediction", "stackedprediction")) c(0, 1.04) else
    NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  factor.lty = 1L,
  factor.pch = 19L,
  factor.col = col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = factor.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)
# S3 method for glm
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = prediction::seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "prediction") paste0("Predicted value") else
    paste0("Marginal effect of ", dx),
  xlim = NULL,
  ylim = NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  se.type = c("shade", "lines", "none"),
  se.col = "black",
  se.fill = grDevices::gray(0.5, 0.5),
  se.lwd = lwd,
  se.lty = if (match.arg(se.type) == "lines") 1L else 0L,
  factor.lty = 0L,
  factor.pch = 19L,
  factor.col = se.col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = se.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)
# S3 method for lm
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = prediction::seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "prediction") paste0("Predicted value") else
    paste0("Marginal effect of ", dx),
  xlim = NULL,
  ylim = NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  se.type = c("shade", "lines", "none"),
  se.col = "black",
  se.fill = grDevices::gray(0.5, 0.5),
  se.lwd = lwd,
  se.lty = if (match.arg(se.type) == "lines") 1L else 0L,
  factor.lty = 0L,
  factor.pch = 19L,
  factor.col = se.col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = se.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)
# S3 method for loess
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = prediction::seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "prediction") paste0("Predicted value") else
    paste0("Marginal effect of ", dx),
  xlim = NULL,
  ylim = NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  se.type = c("shade", "lines", "none"),
  se.col = "black",
  se.fill = grDevices::gray(0.5, 0.5),
  se.lwd = lwd,
  se.lty = if (match.arg(se.type) == "lines") 1L else 0L,
  factor.lty = 0L,
  factor.pch = 19L,
  factor.col = se.col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = se.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)
# S3 method for polr
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "classprediction", "stackedprediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "effect") paste0("Marginal effect of ", dx) else
    paste0("Predicted value"),
  xlim = NULL,
  ylim = if (match.arg(what) %in% c("prediction", "stackedprediction")) c(0, 1.04) else
    NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  factor.lty = 1L,
  factor.pch = 19L,
  factor.col = col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = factor.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)
# S3 method for multinom
cplot(
  object,
  x = attributes(terms(object))[["term.labels"]][1L],
  dx = x,
  what = c("prediction", "classprediction", "stackedprediction", "effect"),
  data = prediction::find_data(object),
  type = c("response", "link"),
  vcov = stats::vcov(object),
  at,
  n = 25L,
  xvals = seq_range(data[[x]], n = n),
  level = 0.95,
  draw = TRUE,
  xlab = x,
  ylab = if (match.arg(what) == "effect") paste0("Marginal effect of ", dx) else
    paste0("Predicted value"),
  xlim = NULL,
  ylim = if (match.arg(what) %in% c("prediction", "stackedprediction")) c(0, 1.04) else
    NULL,
  lwd = 1L,
  col = "black",
  lty = 1L,
  factor.lty = 1L,
  factor.pch = 19L,
  factor.col = col,
  factor.fill = factor.col,
  factor.cex = 1L,
  xaxs = "i",
  yaxs = xaxs,
  las = 1L,
  scatter = FALSE,
  scatter.pch = 19L,
  scatter.col = factor.col,
  scatter.bg = scatter.col,
  scatter.cex = 0.5,
  rug = TRUE,
  rug.col = col,
  rug.size = -0.02,
  ...
)