library(marima)
data(austr)
old.data <- t(austr)[, 1:83]
Model2 <- define.model(kvar=7, ar=c(1), ma=c(1),
rem.var=c(1, 6, 7), indep=NULL)
Marima2 <- marima(old.data, means=1, ar.pattern=Model2$ar.pattern,
ma.pattern=Model2$ma.pattern, Check=FALSE, Plot="none", penalty=4)
resid.cov <- Marima2$resid.cov
averages <- Marima2$averages
ar <- Marima2$ar.estimates
ma <- Marima2$ma.estimates
N <- 1000
kvar <- 7
y.sim <- marima.sim(kvar = kvar, ar.model = ar, ma.model = ma,
seed = 4711, averages = averages, resid.cov = resid.cov, nsim = N)
# Now simulate from model identified by marima (model=Marima2).
# The relevant ar and ma patterns are saved in
# Marima2$out.ar.pattern and Marima2$out.ma.pattern, respectively:
Marima.sim <- marima( t(y.sim), means=1,
ar.pattern=Marima2$out.ar.pattern,
ma.pattern=Marima2$out.ma.pattern,
Check=FALSE, Plot="none", penalty=0)
cat("Comparison of simulation model and estimates",
" from simulated data. \n")
round(Marima2$ar.estimates[, , 2], 4)
round(Marima.sim$ar.estimates[, , 2], 4)
round(Marima2$ma.estimates[, , 2], 4)
round(Marima.sim$ma.estimates[, , 2], 4)
Run the code above in your browser using DataLab