Learn R Programming

marked (version 1.2.8)

cjs.lnl: Likelihood function for Cormack-Jolly-Seber model

Description

For a given set of parameters and data, it computes -log Likelihood value.

Usage

cjs.lnl(
  par,
  model_data,
  Phi.links = NULL,
  p.links = NULL,
  debug = FALSE,
  all = FALSE,
  cjsenv
)

Value

either -log likelihood value if all=FALSE or the entire list contents of the call to the FORTRAN subroutine if all=TRUE. The latter is used from cjs_admb after optimization to extract the real parameter estimates at the final beta values.

Arguments

par

vector of parameter values

model_data

a list that contains: 1)imat-list of vectors and matrices constructed by process.ch from the capture history data, 2)Phi.dm design matrix for Phi constructed by create.dm, 3)p.dm design matrix for p constructed by create.dm, 4)Phi.fixed matrix with 3 columns: ch number(i), occasion number(j), fixed value(f) to fix phi(i,j)=f, 5)p.fixed matrix with 3 columns: ch number(i), occasion number(j), and 6) time.intervals intervals of time between occasions if not all 1 fixed value(f) to fix p(i,j)=f

Phi.links

vector of links for each parameter

p.links

vector of links for each parameter

debug

if TRUE will printout values of par and function value

all

if TRUE, returns entire list rather than just lnl; can be used to extract reals

cjsenv

environment for cjs to update iteration counter

Author

Jeff Laake

Details

This function uses a FORTRAN subroutine (cjs.f) to speed up computation of the likelihood but the result can also be obtained wholly in R with a small loss in precision. See R code below. The R and FORTRAN code uses the likelihood formulation of Pledger et al.(2003).


get.p=function(beta,dm,nocc,Fplus) 
{
# compute p matrix from parameters (beta) and list of design matrices (dm) 
# created by function create.dm
  ps=cbind(rep(1,nrow(dm)/(nocc-1)),
     matrix(dm
  ps[Fplus==1]=plogis(ps[Fplus==1]) 
  return(ps) 
}
get.Phi=function(beta,dm,nocc,Fplus) 
{
# compute Phi matrix from parameters (beta) and list of design matrices (dm)
# created by function create.dm 
  Phis=cbind(rep(1,nrow(dm)/(nocc-1)),
     matrix(dm
  Phis[Fplus==1]=plogis(Phis[Fplus==1]) 
  return(Phis) 
}
#################################################################################
# cjs.lnl - computes likelihood for CJS using Pledger et al (2003)
# formulation for the likelihood. This code does not cope with fixed parameters or 
# loss on capture but could be modified to do so. Also, to work directly with cjs.r and
# cjs.accumulate call to process.ch would have to have all=TRUE to get Fplus and L.
# Arguments: 
# par             - vector of beta parameters 
# imat           - list of freq, indicator vector and matrices for ch data created by process.ch 
# Phi.dm         - list of design matrices; a dm for each capture history 
# p.dm           - list of design matrices; a dm for each capture history 
# debug          - if TRUE show iterations with par and -2lnl 
# time.intervals - intervals of time between occasions 
# Value: -LnL using
#################################################################################
cjs.lnl=function(par,model_data,Phi.links=NULL,p.links=NULL,debug=FALSE,all=FALSE) {
if(debug)cat("\npar = ",par)
#extract Phi and p parameters from par vector 
nphi=ncol(model_data$Phi.dm)
np=ncol(model_data$p.dm) 
beta.phi=par[1:nphi]
beta.p=par[(nphi+1):(nphi+np)] 
#construct parameter matrices (1 row for each capture history and a column 
 #for each occasion)
Phis=get.Phi(beta.phi,model_data$Phi.dm,nocc=ncol(model_data$imat$chmat),
                          model_data$imat$Fplus)
if(!is.null(model_data$time.intervals)) 
{
	exponent=cbind(rep(1,nrow(Phis)),model_data$time.intervals)
	Phis=Phis^exponent 
} 
ps=get.p(beta.p,model_data$p.dm,nocc=ncol(model_data$imat$chmat),
           model_data$imat$Fplus)
if(debug)cat("\npar = ",par)
# Compute probability of dying in interval from Phis
M=cbind((1-Phis)[,-1],rep(1,nrow(Phis)))
# compute cummulative survival from release across each subsequent time
# and the cummulative probability for detection (capture) across each time
Phi.cumprod=1-model_data$imat$Fplus + Phis*model_data$imat$Fplus 
cump=(1-model_data$imat$Fplus)+model_data$imat$Fplus*
         (model_data$imat$chmat*ps+(1-model_data$imat$chmat)*(1-ps))
for (i in 2:ncol(cump))
{
	Phi.cumprod[,i]=Phi.cumprod[,i-1]*Phi.cumprod[,i] 
	cump[,i]=cump[,i-1]*cump[,i] 
}
# compute prob of capture-history
pch=rowSums(model_data$imat$L*M*Phi.cumprod*cump)
lnl=-sum(model_data$imat$freq*log(pch))
if(debug)cat("\n-2lnl = ",2*lnl) 
return(lnl) 
} 

References

Pledger, S., K. H. Pollock, et al. (2003). Open capture-recapture models with heterogeneity: I. Cormack-Jolly-Seber model. Biometrics 59(4):786-794.