# NOT RUN {
X <- matrix(rnorm(20 * 6), nrow = 20, ncol = 6)
rownames(X) <- LETTERS[1:nrow(X)]
colnames(X) <- letters[1:ncol(X)]
print(X)
# - - - - - - - - - - - - - - - - - - - - - - - - - -
# Apply rowMeans() for 3 sets of 2 columns
# - - - - - - - - - - - - - - - - - - - - - - - - - -
nbr_of_sets <- 3
S <- matrix(1:ncol(X), ncol = nbr_of_sets)
colnames(S) <- sprintf("s%d", 1:nbr_of_sets)
print(S)
Z <- rowAvgsPerColSet(X, S = S)
print(Z)
# Validation
Z0 <- cbind(s1 = rowMeans(X[, 1:2]),
s2 = rowMeans(X[, 3:4]),
s3 = rowMeans(X[, 5:6]))
stopifnot(identical(drop(Z), Z0))
# - - - - - - - - - - - - - - - - - - - - - - - - - -
# Apply colMeans() for 5 sets of 4 rows
# - - - - - - - - - - - - - - - - - - - - - - - - - -
nbr_of_sets <- 5
S <- matrix(1:nrow(X), ncol = nbr_of_sets)
colnames(S) <- sprintf("s%d", 1:nbr_of_sets)
print(S)
Z <- colAvgsPerRowSet(X, S = S)
print(Z)
# Validation
Z0 <- rbind(s1 = colMeans(X[ 1:4, ]),
s2 = colMeans(X[ 5:8, ]),
s3 = colMeans(X[ 9:12, ]),
s4 = colMeans(X[13:16, ]),
s5 = colMeans(X[17:20, ]))
stopifnot(identical(drop(Z), Z0))
# - - - - - - - - - - - - - - - - - - - - - - - - - -
# When there is only one "complete" set
# - - - - - - - - - - - - - - - - - - - - - - - - - -
nbr_of_sets <- 1
S <- matrix(1:ncol(X), ncol = nbr_of_sets)
colnames(S) <- sprintf("s%d", 1:nbr_of_sets)
print(S)
Z <- rowAvgsPerColSet(X, S = S, FUN = rowMeans)
print(Z)
Z0 <- rowMeans(X)
stopifnot(identical(drop(Z), Z0))
nbr_of_sets <- 1
S <- matrix(1:nrow(X), ncol = nbr_of_sets)
colnames(S) <- sprintf("s%d", 1:nbr_of_sets)
print(S)
Z <- colAvgsPerRowSet(X, S = S, FUN = colMeans)
print(Z)
Z0 <- colMeans(X)
stopifnot(identical(drop(Z), Z0))
# }
Run the code above in your browser using DataLab