powered by
This function returns an m by n matrix of the powers of the alpha vector
vandermonde.matrix(alpha, n)
A numerical vector of values
The column dimension of the Vandermonde matrix
A matrix.
In linear algebra, a Vandermonde matrix is an \(m \times n\) matrix with terms of a geometric progression of an \(m \times 1\) parameter vector \({\bf{\alpha }} = {\left[ {\begin{array}{*{20}{c}} {{\alpha _1}}&{{\alpha _2}}& \cdots &{{\alpha _m}} \end{array}} \right]^\prime }\) such that \(V\left( {\bf{\alpha }} \right) = \left[ {\begin{array}{*{20}{c}} 1&{{\alpha _1}}&{\alpha _1^2}& \cdots &{\alpha _1^{n - 1}}\\ 1&{{\alpha _2}}&{\alpha _2^2}& \cdots &{\alpha _2^{n - 1}}\\ 1&{{\alpha _3}}&{\alpha _3^2}& \cdots &{\alpha _3^{n - 1}}\\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1&{{\alpha _m}}&{\alpha _m^2}& \cdots &{\alpha _m^{n - 1}} \end{array}} \right]\).
Horn, R. A. and C. R. Johnson (1991). Topics in matrix analysis, Cambridge University Press.
# NOT RUN { alpha <- c( .1, .2, .3, .4 ) V <- vandermonde.matrix( alpha, 4 ) print( V ) # }
Run the code above in your browser using DataLab