If either \(\bf{x}\) or \(\bf{y}\) is a vector, it is converted to a matrix.
Suppose that \(\bf{x}\) is an \(m \times n\) matrix and \(\bf{y}\) is an \( p \times q\)
matrix. Then, the function returns the matrix \(\left\lbrack {\begin{array}{cccc}
{{x_{1,1}}\;{\bf{y}}}&{{x_{1,2}}\;{\bf{y}}}& \cdots &{{x_{1,n}}\;{\bf{y}}}\\
{{x_{2,1}}\;{\bf{y}}}&{{x_{2,2}}\;{\bf{y}}}& \cdots &{{x_{2,n}}\;{\bf{y}}}\\
\cdots & \cdots & \cdots & \cdots \\
{{x_{m,1}}\;{\bf{y}}}&{{x_{m,2}}\;{\bf{y}}}& \cdots &{{x_{m,n}}\;{\bf{y}}}
\end{array}} \right\rbrack\).