Learn R Programming

matrixcalc (version 1.0-6)

frobenius.matrix: Frobenius Matrix

Description

This function returns an order n Frobenius matrix that is useful in numerical mathematics.

Usage

frobenius.matrix(n)

Value

An order \(n\) matrix

Arguments

n

a positive integer value greater than 1

Author

Frederick Novomestky fnovomes@poly.edu

Details

The Frobenius matrix is also called the companion matrix. It arises in the solution of systems of linear first order differential equations. The formula for the order \(n\) Frobenius matrix is \({\bf{F}} = \left\lbrack {\begin{array}{ccccc}0&0& \cdots &0&{{{\left( { - 1} \right)}^{n - 1}} \left( {\begin{array}{ccccc}n\\0\end{array}} \right)}\\1&0& \cdots &0&{{{\left( { - 1} \right)}^{n - 2}} \left( {\begin{array}{ccccc}n\\1\end{array}} \right)}\\0&1& \ddots &0&{{{\left( { - 1} \right)}^{n - 3}} \left( {\begin{array}{ccccc}n\\2\end{array}} \right)}\\ \vdots & \vdots & \ddots & \vdots & \vdots \\0&0& \cdots &1&{{{\left( { - 1} \right)}^0} \left( {\begin{array}{ccccc}n\\{n - 1}\end{array}} \right)}\end{array}} \right\rbrack\).

References

Aceto, L. and D. Trigiante (2001). Matrices of Pascal and Other Greats, American Mathematical Monthly, March 2001, 108(3), 232-245.

Examples

Run this code
F <- frobenius.matrix( 10 )
print( F )

Run the code above in your browser using DataLab