In linear algebra, a Vandermonde matrix is an \(m \times n\) matrix with terms
of a geometric progression of an \(m \times 1\) parameter vector \({\bf{\alpha }} = {\left\lbrack {\begin{array}{cccc}
{{\alpha _1}}&{{\alpha _2}}& \cdots &{{\alpha _m}}
\end{array}} \right\rbrack^\prime }\)