The following describes all estimation function types used in matrixpls package.
A function for calculating indicator weights using the data covariance matrix
S
, a model specification model
, and a weight pattern W.model
. Returns
a weight matrix W
. The default is weightFun.pls
A function for estimating the model parameters using
the data covariance matrix S
, model specification model
,
and weight matrix W
. Returns a named vector of parameter estimates.
The default is parameterEstim.separate
A function for estimating the parameters of one model matrix using
the data covariance matrix S
, a model matrix modelMatrix
, and a weight matrix
W
. Disattenuated composite correlation matrix C
and indicator composite
covariance matrix IC
are optional. Returns matrix of parameter estimates.
The default is estimator.ols
A function for resolving weight sign ambiguity based on the data covariance matrix
S
and a weight matrix W
. Returns
a weight matrix W
. See weightSign
for details.
A function for calculating outer weights using the data covariance matrix
S
, a weight matrix W
, an inner weight matrix E
,
and a weight pattern W.model
. Returns
a weight matrix W
. See outerEstim
.
A function for calculating inner weights using the data covariance matrix
S
, a weight matrix W
, and an inner model matrix inner.mod
. Returns
an inner weight matrix E
. The default is innerEstim.path
.
A function that takes the old Wold
and new weight Wold
matrices and
returns a scalar that is compared against tol
to check for convergence. The default
is convCheck.absolute
.
A function for calculating value for an optimization criterion based on a
matrixpls
result object. Returns a scalar. The default is optimCrit.maximizeInnerR2
.
A function for calculating reliability estimates based on the
data covariance matrix S
, factor loading matrix loadings
, and a weight matrix W
.
Returns a vector of reliability estimates. The default is
reliabilityEstim.weightLoadingProduct