Learn R Programming

maxLik (version 1.5-2.1)

Maximum Likelihood Estimation and Related Tools

Description

Functions for Maximum Likelihood (ML) estimation, non-linear optimization, and related tools. It includes a unified way to call different optimizers, and classes and methods to handle the results from the Maximum Likelihood viewpoint. It also includes a number of convenience tools for testing and developing your own models.

Copy Link

Version

Install

install.packages('maxLik')

Monthly Downloads

30,069

Version

1.5-2.1

License

GPL (>= 2)

Maintainer

Last Published

March 24th, 2024

Functions in maxLik (1.5-2.1)

maxBFGS

BFGS, conjugate gradient, SANN and Nelder-Mead Maximization
condiNumber

Print matrix condition numbers column-by-column
compareDerivatives

function to compare analytic and numeric derivatives
MaxControl-class

Class "MaxControl"
maxNR

Newton- and Quasi-Newton Maximization
AIC.maxLik

Methods for the various standard functions
maxSGA

Stochastic Gradient Ascent
nIter

Return number of iterations for iterative models
maxLik

Maximum likelihood estimation
maxLik-package

Maximum Likelihood Estimation
maximType

Type of Minimization/Maximization
maxLik-internal

Internal maxLik Functions
summary.maxim

Summary method for maximization
sumt

Equality-constrained optimization
returnCode

Success or failure of the optimization
reexports

Objects exported from other packages
tidy.maxLik

tidy and glance methods for maxLik objects
maxValue

Function value at maximum
vcov.maxLik

Variance Covariance Matrix of maxLik objects
numericGradient

Functions to Calculate Numeric Derivatives
storedValues

Return the stored values of optimization
summary.maxLik

summary the Maximum-Likelihood estimation
objectiveFn

Optimization Objective Function
nObs.maxLik

Number of Observations
nParam.maxim

Number of model parameters
confint.maxLik

confint method for maxLik objects
logLik.maxLik

Return the log likelihood value
gradient

Extract Gradients Evaluated at each Observation
bread.maxLik

Bread for Sandwich Estimator
fnSubset

Call fnFull with variable and fixed parameters
hessian

Hessian matrix
activePar

free parameters under maximization