# NOT RUN {
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
hum(y = label, d = data,method = "multinom")
## [1] 0.9972
hum(y = label, d = data,method = "svm")
## [1] 0.9964
hum(y = label, d = data,method = "svm",type="C",kernel="linear",cost=4,scale=TRUE)
## [1] 0.9972
hum(y = label, d = data, method = "tree")
## [1] 0.998
data <- data.matrix(iris[, 1:4])
label <- as.numeric(iris[, 5])
# multinomial
require(nnet)
# model
fit <- multinom(label ~ data, maxit = 1000, MaxNWts = 2000)
predict.probs <- predict(fit, type = "probs")
pp<- data.frame(predict.probs)
# extract the probablity assessment vector
head(pp)
hum(y = label, d = pp, method = "prob")
## [1] 0.9972
table(mtcars$carb)
for (i in (1:length(mtcars$carb))) {
if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
mtcars$carb_new[i] = 9
}else{
mtcars$carb_new[i] = mtcars$carb[i]
}
}
data <- data.matrix(mtcars[, c(1:10)])
mtcars$carb_new <- factor(mtcars$carb_new)
label <- mtcars$carb_new
str(mtcars)
hum(y = label, d = data, method = "tree",control = rpart::rpart.control(minsplit = 5))
## [1] 1
hum(y = label, d = data, method = "svm",kernel="linear",cost=0.7,scale=TRUE)
## [1] 1
hum(y = label, d = data, method = "svm", kernel ="radial",cost=0.7,scale=TRUE)
## [1] 0.53
# }
Run the code above in your browser using DataLab