# NOT RUN {
str(iris)
data <- iris[, 3]
label <- iris[, 5]
pdi(y = label, d = data,method = "multinom")
## Call:
## pdi(y = label, d = data, method = "multinom")
## Overall Polytomous Discrimination Index:
## 0.9845333
## Category-specific Polytomous Discrimination Index:
## CATEGORIES VALUES
## 1 1 1.0000
## 2 2 0.9768
## 3 3 0.9768
pdi(y = label, d = data,method = "tree")
pdi(y = label, d = data,method = "tree",control = rpart::rpart.control(minsplit = 200))
data <- data.matrix(iris[, 3])
label <- as.numeric(iris[, 5])
# multinomial
require(nnet)
# model
fit <- multinom(label ~ data, maxit = 1000, MaxNWts = 2000)
predict.probs <- predict(fit, type = "probs")
pp<- data.frame(predict.probs)
# extract the probablity assessment vector
head(pp)
pdi(y = label, d = pp, method = "prob")
# }
Run the code above in your browser using DataLab