# NOT RUN {
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
rsq(y = label, d = data, method="multinom")
## Call:
## rsq(y = label, d = data, method = "multinom")
## Overall R-squared value:
## 0.9637932
## Category-specific R-squared value:
## CATEGORIES VALUES
## 1 setosa 0.9999824
## 2 versicolor 0.9456770
## 3 virginica 0.9457203
rsq(y = label, d = data, method = "tree")
data <- data.matrix(iris[, 1:4])
label <- as.numeric(iris[, 5])
# multinomial
require(nnet)
# model
fit <- multinom(label ~ data, maxit = 1000, MaxNWts = 2000)
predict.probs <- predict(fit, type = "probs")
pp<- data.frame(predict.probs)
# extract the probablity assessment vector
head(pp)
rsq(y = label, d = pp, method = "prob")
table(mtcars$carb)
for (i in (1:length(mtcars$carb))) {
if (mtcars$carb[i] == 3 | mtcars$carb[i] == 6 | mtcars$carb[i] == 8) {
mtcars$carb_new[i] = 9
}else{
mtcars$carb_new[i] = mtcars$carb[i]
}
}
data <- data.matrix(mtcars[, c(1)])
mtcars$carb_new <- factor(mtcars$carb_new)
label <- mtcars$carb_new
str(mtcars)
rsq(y = label, d = data, method="tree")
rsq(y = label, d = data, method="lda")
rsq(y = label, d = data, method="lda",prior = c(100,1,1,1)/103)
# }
Run the code above in your browser using DataLab