mstep(data, modelid, z, ...)
modelid
and their interpretation are as follows:
"EI"
z
should have a row for each observation
in data
, and a column for each component of the mixture.eps
varies the parameterization, each of which has a default.F
.F
.noise = T
). Default : determined by function hypvol
z
:equal = T
).
The loglikelihood is returned as an attribute.A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, Series B,39:1-22 (1977).
G. J. MacLachlan and K. E. Basford, The EM Algorithm and Extensions, Wiley, (1997).
me
, estep
data(iris)
cl <- mhclass(mhtree(iris[,1:4], modelid = "VVV"),3)
z <- me( iris[,1:4], modelid = "VVV", ctoz(cl))
pars <- mstep(iris[,1:4], modelid="VVV", z)
Run the code above in your browser using DataLab