mstep.VEV(data, z, eps, tol, itmax, equal = F, noise = F, Vinv)
z
should have a row for each observation
in data
, and a column for each component of the mixture.c(.Machi
tol
.itmax
. Default: Inf
(termination is determined by
tol
).F
.F
.noise = T
). Default : determined by function hypvol
z
:equal = T
).
The loglikelihood and reciprocal condition estimate are returned as attributes.A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, Series B,39:1-22 (1977).
G. J. MacLachlan and K. E. Basford, The EM Algorithm and Extensions, Wiley, (1997).
mstep
, me.VEV
, estep.XEV
data(iris)
cl <- mhclass(mhtree(iris[,1:4]),3)
z <- me.VEV( iris[,1:4], ctoz(cl))
mstep.VEV(iris[,1:4], z)
Run the code above in your browser using DataLab