Learn R Programming

mclust (version 2.1-14)

mclust2Dplot: Plot two-dimensional data modelled by an MVN mixture.

Description

Plot two-dimensional data given parameters of an MVN mixture model for the data.

Usage

mclust2Dplot(data, ...,
             type = c("classification","uncertainty","errors"), ask = TRUE,
             quantiles = c(0.75, 0.95), symbols, scale = FALSE,
             identify = FALSE, CEX = 1, PCH = ".", xlim, ylim,
             swapAxes = FALSE)

Arguments

data
A numeric matrix or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. In this case the data are two dimensional, so there are
...
One or more of the following: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
type
Any subset of c("classification","uncertainty","errors"). The function will produce the corresponding plot if it has been supplied sufficient information to do so. If more than one plot is possible then users will be asked t
ask
A logical variable indicating whether or not a menu should be produced when more than one plot is possible. The default is ask=TRUE.
quantiles
A vector of length 2 giving quantiles used in plotting uncertainty. The smallest symbols correspond to the smallest quantile (lowest uncertainty), medium-sized (open) symbols to points falling between the given quantiles, and large (filled)
symbols
Either an integer or character vector assigning a plotting symbol to each unique class classification. Elements in symbols correspond to classes in classification in order of appearance in the observ
scale
A logical variable indicating whether or not the two chosen dimensions should be plotted on the same scale, and thus preserve the shape of the distribution. Default: scale=FALSE
identify
A logical variable indicating whether or not to add a title to the plot identifying the dimensions used.
CEX
An argument specifying the size of the plotting symbols. The default value is 1.
PCH
An argument specifying the symbol to be used when a classificatiion has not been specified for the data. The default value is a small dot ".".
xlim, ylim
An argument specifying bounds for the ordinate, abscissa of the plot. This may be useful for when comparing plots.
swapAxes
A logical variable indicating whether or not the axes should be swapped for the plot.

Side Effects

One or more plots showing location of the mixture components, classification, uncertainty, and/or classification errors.

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631. See http://www.stat.washington.edu/mclust. C. Fraley and A. E. Raftery (2002). MCLUST:Software for model-based clustering, density estimation and discriminant analysis. Technical Report, Department of Statistics, University of Washington. See http://www.stat.washington.edu/mclust.

See Also

surfacePlot, clPairs, coordProj, randProj, spinProj, mclustOptions, do.call

Examples

Run this code
n <- 250 ## create artificial data
set.seed(0)
x <- rbind(matrix(rnorm(n*2), n, 2) %*% diag(c(1,9)),
           matrix(rnorm(n*2), n, 2) %*% diag(c(1,9))[,2:1])
xclass <- c(rep(1,n),rep(2,n))

xEMclust <- summary(EMclust(x),x)

mclust2Dplot(x, truth = xclass, z = xEMclust$z, ask=FALSE,
                mu = xEMclust$mu, sigma = xEMclust$sigma)

do.call("mclust2Dplot", c(list(data = x, truth = xclass, ask=FALSE), xEMclust))

Run the code above in your browser using DataLab