Learn R Programming

mclust (version 3.4.7)

adjustedRandIndex: Adjusted Rand Index

Description

Computes the adjusted Rand index comparing two classifications.

Usage

adjustedRandIndex(x, y)

Arguments

x
A numeric or character vector of class labels.
y
A numeric or character vector of class labels. The length of y should be the same as that of x.

Value

  • The adjusted Rand index comparing the two partitions (a scalar). It has the value

References

L. Hubert and P. Arabie (1985) Comparing Partitions, Journal of the Classification 2:193-218.

See Also

classError, mapClass, table

Examples

Run this code
a <- rep(1:3, 3)
a
b <- rep(c("A", "B", "C"), 3)
b
adjustedRandIndex(a, b)

a <- sample(1:3, 9, replace = TRUE)
a
b <- sample(c("A", "B", "C"), 9, replace = TRUE)
b
adjustedRandIndex(a, b)

a <- rep(1:3, 4)
a
b <- rep(c("A", "B", "C", "D"), 3)
b
adjustedRandIndex(a, b)

irisHCvvv <- hc(modelName = "VVV", data = iris[,-5])
cl3 <- hclass(irisHCvvv, 3)
adjustedRandIndex(cl3,iris[,5])

irisBIC <- mclustBIC(iris[,-5])
adjustedRandIndex(summary(irisBIC,iris[,-5])$classification,iris[,5])
adjustedRandIndex(summary(irisBIC,iris[,-5],G=3)$classification,iris[,5])

Run the code above in your browser using DataLab