randProj(data, seeds=0, parameters=NULL, z=NULL,
classification=NULL, truth=NULL, uncertainty=NULL,
what = c("classification", "errors", "uncertainty"),
quantiles = c(0.75, 0.95), symbols=NULL, colors=NULL, scale = FALSE,
xlim=NULL, ylim=NULL, CEX = 1, PCH = ".", identify = FALSE, ...)0:1000.
Each seed should produce a different projection.[i,k]th entry gives the
probability of observation i belonging to the kth class.
Used to compute classification and
uncertainty if those arguments aren't available.data. If present argument z
will be ignored.classification
or z is also present,
this is used for displaying classification errors.z
will be ignored."classification"
(default), "errors", "uncertainty".classification. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order usedclassification. Elements in colors
correspond to classes in order of appearance in the sequence of
observations (the order used by the fuscale=FALSEC. Fraley and A. E. Raftery (2006, revised 2010). MCLUST Version 3: An R Package for Normal Mixture Modeling and Model-Based Clustering, Technical Report, Department of Statistics, University of Washington.
clPairs,
coordProj,
mclust2Dplot,
mclustOptionsest <- meVVV(iris[,-5], unmap(iris[,5]))
par(pty = "s", mfrow = c(1,1))
randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
what = "classification", identify = TRUE)
randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
truth = iris[,5], what = "errors", identify = TRUE)
randProj(iris[,-5], seeds=1:3, parameters = est$parameters, z = est$z,
what = "uncertainty", identify = TRUE)Run the code above in your browser using DataLab