Learn R Programming

mclust (version 4.1)

em: EM algorithm starting with E-step for parameterized Gaussian mixture models.

Description

Implements the EM algorithm for parameterized Gaussian mixture models, starting with the expectation step.

Usage

em(modelName, data, parameters, prior = NULL, control = emControl(),
   warn = NULL, ...)

Arguments

modelName
A character string indicating the model. The help file for mclustModelNames describes the available models.
data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
parameters
A names list giving the parameters of the model. The components are as follows: [object Object],[object Object],[object Object],[object Object]
prior
Specification of a conjugate prior on the means and variances. The default assumes no prior.
control
A list of control parameters for EM. The defaults are set by the call emControl().
warn
A logical value indicating whether or not a warning should be issued when computations fail. The default is warn=FALSE.
...
Catches unused arguments in indirect or list calls via do.call.

Value

  • A list including the following components:
  • modelNameA character string identifying the model (same as the input argument).
  • zA matrix whose [i,k]th entry is the conditional probability of the ith observation belonging to the kth component of the mixture.
  • parameters[object Object],[object Object],[object Object],[object Object]
  • loglikThe log likelihood for the data in the mixture model.
  • Attributes:"info" Information on the iteration. "WARNING" An appropriate warning if problems are encountered in the computations.

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631.

C. Fraley and A. E. Raftery (2005). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.

C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.

C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.

See Also

emE, ..., emVVV, estep, me, mstep, mclust.options, do.call

Examples

Run this code
msEst <- mstep(modelName = "EEE", data = iris[,-5], 
               z = unmap(iris[,5]))
names(msEst)

em(modelName = msEst$modelName, data = iris[,-5],
   parameters = msEst$parameters)
do.call("em", c(list(data = iris[,-5]), msEst))   ## alternative call

Run the code above in your browser using DataLab