Learn R Programming

mclust (version 4.1)

summary.Mclust: Summarizing Gaussian Finite Mixture Model Fits

Description

Summary method for class "Mclust".

Usage

## S3 method for class 'Mclust':
summary(object, parameters = FALSE, classification = FALSE, \dots)
## S3 method for class 'summary.Mclust':
print(x, digits = getOption("digits"), ...)

Arguments

object
An object of class "Mclust" resulting of a call to Mclust or densityMclust.
x
An object of class "summary.Mclust", usually, a result of a call to summary.Mclust.
parameters
Logical; if TRUE, the parameters of mixture components are printed.
classification
Logical; if TRUE, the MAP classification/clustering of observations is printed.
digits
The number of significant digits to use when printing.
...
Further arguments passed to or from other methods.

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611:631.

C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.

See Also

Mclust, densityMclust.

Examples

Run this code
mod1 = Mclust(iris[,1:4])
summary(mod1)
summary(mod1, parameters = TRUE, classification = TRUE)

mod2 = Mclust(iris[,1:4], G = 1)
summary(mod2, parameters = TRUE, classification = TRUE)

mod3 = Mclust(iris[,1:4], prior = priorControl())
summary(mod3)

mod4 = Mclust(iris[,1:4], prior = priorControl(functionName="defaultPrior", shrinkage=0.1))
summary(mod4, parameters = TRUE, classification = TRUE)

Run the code above in your browser using DataLab