Learn R Programming

mclust (version 5.0.2)

Mclust: Model-Based Clustering

Description

The optimal model according to BIC for EM initialized by hierarchical clustering for parameterized Gaussian mixture models.

Usage

Mclust(data, G = NULL, modelNames = NULL, 
       prior = NULL, 
       control = emControl(), 
       initialization = NULL, 
       warn = mclust.options("warn"), ...)

Arguments

data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
G
An integer vector specifying the numbers of mixture components (clusters) for which the BIC is to be calculated. The default is G=1:9.
modelNames
A vector of character strings indicating the models to be fitted in the EM phase of clustering. The default is: ll{ for univariate data c("E", "V") for multivariate data ($n > d$) mclust.options("emMod
prior
The default assumes no prior, but this argument allows specification of a conjugate prior on the means and variances through the function priorControl.
control
A list of control parameters for EM. The defaults are set by the call emControl().
initialization
A list containing zero or more of the following components: [object Object],[object Object],[object Object]
warn
A logical value indicating whether or not certain warnings (usually related to singularity) should be issued. The default is controlled by mclust.options.
...
Catches unused arguments in indirect or list calls via do.call.

Value

  • An object of class 'Mclust' providing the optimal (according to BIC) mixture model estimation. The details of the output components are as follows:
  • callThe matched call
  • dataThe input data matrix.
  • modelNameA character string denoting the model at which the optimal BIC occurs.
  • nThe number of observations in the data.
  • dThe dimension of the data.
  • GThe optimal number of mixture components.
  • BICAll BIC values.
  • bicOptimal BIC value.
  • loglikThe loglikelihood corresponding to the optimal BIC.
  • dfThe number of estimated parameters.
  • hypvolThe hypervolume parameter for the noise component if required, otherwise set to NULL (see hypvol).
  • parametersA list with the following components: [object Object],[object Object],[object Object]
  • zA matrix whose [i,k]th entry is the probability that observation i in the test data belongs to the kth class.
  • classificationThe classification corresponding to z, i.e. map(z).
  • uncertaintyThe uncertainty associated with the classification.

References

C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington. C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611:631.

C. Fraley and A. E. Raftery (2005, revised 2009). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.

C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.

See Also

summary.Mclust, plot.Mclust, priorControl, emControl, hc, mclustBIC, mclustModelNames, mclust.options

Examples

Run this code
mod1 = Mclust(iris[,1:4])
summary(mod1)

mod2 = Mclust(iris[,1:4], G = 3)
summary(mod2, parameters = TRUE)

# Using prior
mod3 = Mclust(iris[,1:4], prior = priorControl())
summary(mod3)

mod4 = Mclust(iris[,1:4], prior = priorControl(functionName="defaultPrior", shrinkage=0.1))
summary(mod4)

# Clustering of faithful data with some artificial noise added 
nNoise = 100
set.seed(0) # to make it reproducible
Noise = apply(faithful, 2, function(x) 
                           runif(nNoise, min = min(x)-.1, max = max(x)+.1))
data = rbind(faithful, Noise)
plot(faithful)
points(Noise, pch = 20, cex = 0.5, col = "lightgrey")
set.seed(0)
NoiseInit = sample(c(TRUE,FALSE), size = nrow(faithful)+nNoise, 
                   replace = TRUE, prob = c(3,1)/4)
mod5 = Mclust(data, initialization = list(noise = NoiseInit))
summary(mod5, parameter = TRUE)
plot(mod5, what = "classification")

Run the code above in your browser using DataLab