powered by
Create a hierarchical structure using a random hierarchical partition of the data.
hcRandomPairs(data, seed = NULL, ...)
A numeric two-column matrix in which the ith row gives the minimum index for observations in each of the two clusters merged at the
ith stage of a random agglomerative hierarchical clustering.
A numeric matrix or data frame of observations. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
Optional single value, interpreted as an integer, specifying the seed for random partition.
Catches unused arguments in indirect or list calls via do.call.
do.call
hc, hclass hcVVV
hc
hclass
hcVVV
data <- iris[,1:4] randPairs <- hcRandomPairs(data) str(randPairs) # start model-based clustering from a random partition mod <- Mclust(data, initialization = list(hcPairs = randPairs)) summary(mod)
Run the code above in your browser using DataLab