Learn R Programming

mclust (version 6.1)

predict.MclustSSC: Classification of multivariate observations by semi-supervised Gaussian finite mixtures

Description

Classify multivariate observations based on Gaussian finite mixture models estimated by MclustSSC.

Usage

# S3 method for MclustSSC
predict(object, newdata, ...)

Value

Returns a list of with the following components:

classification

a factor of predicted class labels for newdata.

z

a matrix whose [i,k]th entry is the probability that observation i in newdata belongs to the kth class.

Arguments

object

an object of class 'MclustSSC' resulting from a call to MclustSSC.

newdata

a data frame or matrix giving the data. If missing the train data obtained from the call to MclustSSC are classified.

...

further arguments passed to or from other methods.

Author

Luca Scrucca

See Also

MclustSSC.

Examples

Run this code
# \donttest{
X <- iris[,1:4]
class <- iris$Species
# randomly remove class labels
set.seed(123)
class[sample(1:length(class), size = 120)] <- NA
table(class, useNA = "ifany")
clPairs(X, ifelse(is.na(class), 0, class),
        symbols = c(0, 16, 17, 18), colors = c("grey", 4, 2, 3),
        main = "Partially classified data")

# Fit semi-supervised classification model
mod_SSC  <- MclustSSC(X, class)

pred_SSC <- predict(mod_SSC)
table(Predicted = pred_SSC$classification, Actual = class, useNA = "ifany")

X_new = data.frame(Sepal.Length = c(5, 8),
                   Sepal.Width  = c(3.1, 4),
                   Petal.Length = c(2, 5),
                   Petal.Width  = c(0.5, 2))
predict(mod_SSC, newdata = X_new)
# }

Run the code above in your browser using DataLab