Learn R Programming

memisc (version 0.99.22)

to.data.frame: Convert an Array into a Data Frame

Description

to.data.frame converts an array into a data frame, in such a way that a chosen dimensional extent forms variables in the data frame. The elements of the array must be either atomic, data frames with matching variables, or coercable into such data frames.

Usage

to.data.frame(X,as.vars=1,name="Freq")

Arguments

X

an array.

as.vars

a numeric value or a character string. If it is a numeric value then it indicates the dimensional extend which defines the variables. If it is a character string then it is matched against the names of the dimenstional extents. This is applicable e.g. if X is a contingency table and the dimensional extents are named after the cross-classified factors. Takes effect only if X is an atomic array. If as.vars equals zero, a new variable is created that contains the values of the array, that is, to.data.frame acts on the array X like as.data.frame(as.table(X))

name

a character string; the name of the variable created if X is an atomic array and as.vars equals zero.

Value

A data frame.

Examples

Run this code
# NOT RUN {
berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions)
berktest1 <- By(~Dept+Gender,
                glm(cbind(Admitted,Rejected)~1,family="binomial"),
                data=berkeley)
berktest2 <- By(~Dept,
                glm(cbind(Admitted,Rejected)~Gender,family="binomial"),
                data=berkeley)
Stest1 <- Lapply(berktest2,function(x)predict(x,,se.fit=TRUE)[c("fit","se.fit")])
Stest2 <- Sapply(berktest2,function(x)coef(summary(x)))
Stest2.1 <- Lapply(berktest1,function(x)predict(x,,se.fit=TRUE)[c("fit","se.fit")])
to.data.frame(Stest1)
to.data.frame(Stest2,as.vars=2)
to.data.frame(Stest2.1)
# Recasting a contingency table
to.data.frame(UCBAdmissions,as.vars="Admit")
# }

Run the code above in your browser using DataLab