metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, studlab,
data=NULL, subset=NULL, sm="MD",
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
hakn=FALSE,
method.tau="DL", tau.preset=NULL, TE.tau=NULL,
tau.common=FALSE,
prediction=FALSE, level.predict=level,
method.bias="linreg",
title="", complab="", outclab="",
label.e="Experimental", label.c="Control",
label.left="", label.right="",
byvar, bylab, print.byvar=TRUE,
keepdata=TRUE, warn=TRUE)
"DL"
, "REML"
, "ML"
, "HS"
, "SJ"
,
"HE"
, or "EB"
"rank"
, "linreg"
, or "mm"
, can
be abbreviated."MD"
or "SMD"
) is to be used for pooling of
studies.n.e
).c("metacont", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:"Inverse"
.hakn=TRUE
).keepdata=TRUE
).keepdata=TRUE
).method.tau
). The mean difference is
used as measure of treatment effect if sm="MD"
-- which
correspond to sm="WMD"
in older versions (<0.9) of="" the="" meta="" package.="" for="" summary="" measure="" "SMD", Hedges' adjusted g is
utilised for pooling. Internally, both fixed effect and random effects models are calculated
regardless of values choosen for arguments comb.fixed
and
comb.random
. Accordingly, the estimate for the random effects
model can be extracted from component TE.random
of an object
of class "meta"
even if comb.random=FALSE
. However, all
functions in R package meta
will adequately consider the values
for comb.fixed
and comb.random
. E.g. function
print.meta
will not print results for the random effects
model if comb.random=FALSE
.
The function metagen
is called internally to calculate
individual and overall treatment estimates and standard errors.
If R package metafor (Viechtbauer 2010) is installed, the following
statistical methods are also available.
For the random effects model (argument comb.random=TRUE
), the
method by Hartung and Knapp (Hartung, Knapp 2001; Knapp, Hartung
2003) is used to adjust test statistics and confidence intervals if
argument hakn=TRUE
(internally R function rma.uni
of R
package metafor is called).
Several methods are available to estimate the between-study variance
$\tau^2$ (argument method.tau
):
- DerSimonian-Laird estimator (
method.tau="DL"
) (default) - Restricted maximum-likelihood estimator (
method.tau="REML"
) - Maximum-likelihood estimator (
method.tau="ML"
) - Hunter-Schmidt estimator (
method.tau="HS"
) - Sidik-Jonkman estimator (
method.tau="SJ"
) - Hedges estimator (
method.tau="HE"
) - Empirical Bayes estimator (
method.tau="EB"
).
For all but the DerSimonian-Laird method the R function
rma.uni
of R package metafor is called internally. See help
page of R function rma.uni
for more details on the various
methods to estimate between-study variance $\tau^2$. A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction
and
comb.random
are TRUE
.
R function update.meta
can be used to redo the
meta-analysis of an existing metacont object by only specifying
arguments which should be changed.
0.9)>
Hartung J & Knapp G (2001), On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statistics in Medicine, 20, 1771--82. doi: 10.1002/sim.791 . Higgins JPT, Thompson SG, Spiegelhalter DJ (2009), A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172, 137-159.
Knapp G & Hartung J (2003), Improved Tests for a Random Effects Meta-regression with a Single Covariate. Statistics in Medicine, 22, 2693-710, doi: 10.1002/sim.1482 .
Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta
, metabin
, metagen
data(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
meta1
forest(meta1)
meta2 <- metacont(Fleiss93cont$n.e, Fleiss93cont$mean.e,
Fleiss93cont$sd.e,
Fleiss93cont$n.c, Fleiss93cont$mean.c,
Fleiss93cont$sd.c,
sm="SMD")
meta2
Run the code above in your browser using DataLab