metagen(TE, seTE, studlab, data=NULL, subset=NULL, sm="",
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
hakn=FALSE,
method.tau="DL", tau.preset=NULL, TE.tau=NULL,
tau.common=FALSE,
prediction=FALSE, level.predict=level,
method.bias="linreg",
n.e=NULL, n.c=NULL,
title="", complab="", outclab="",
label.e="Experimental", label.c="Control",
label.left="", label.right="",
byvar, bylab, print.byvar=TRUE,
keepdata=TRUE, warn=TRUE)
"RD"
, "RR"
, "OR"
, "AS"
,
"MD"
, "SMD"
."DL"
, "REML"
, "ML"
, "HS"
, "SJ"
,
"HE"
, or "EB"
"rank"
, "linreg"
, or "mm"
, can
be abbreviated.TE
).c("metagen", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:"Inverse"
.hakn=TRUE
).keepdata=TRUE
).keepdata=TRUE
). Internally, both fixed effect and random effects models are
calculated regardless of values choosen for arguments
comb.fixed
and comb.random
. Accordingly, the estimate
for the random effects model can be extracted from component
TE.random
of an object of class "meta"
even if
comb.random=FALSE
. However, all functions in R package
meta
will adequately consider the values for comb.fixed
and comb.random
. E.g. function print.meta
will
not print results for the random effects model if
comb.random=FALSE
.
If R package metafor (Viechtbauer 2010) is installed, the following statistical methods are also available.
For the random effects model (argument comb.random=TRUE
), the
method by Hartung and Knapp (Knapp, Hartung 2003) is used to adjust
test statistics and confidence intervals if argument
hakn=TRUE
(internally R function rma.uni
of R package
metafor is called).
Several methods are available to estimate the between-study variance
$\tau^2$ (argument method.tau
):
method.tau="DL"
) (default)method.tau="REML"
)method.tau="ML"
)method.tau="HS"
)method.tau="SJ"
)method.tau="HE"
)method.tau="EB"
).rma.uni
of R package metafor is called internally. See help
page of R function rma.uni
for more details on the various
methods to estimate between-study variance $\tau^2$. A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction
and
comb.random
are TRUE
.
R function update.meta
can be used to redo the
meta-analysis of an existing metagen object by only specifying
arguments which should be changed.
Higgins JPT, Thompson SG, Spiegelhalter DJ (2009), A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172, 137-159.
Knapp G & Hartung J (2003), Improved Tests for a Random Effects Meta-regression with a Single Covariate. Statistics in Medicine, 22, 2693-2710, doi: 10.1002/sim.1482 .
Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta
, metabin
, metacont
, print.meta
data(Fleiss93)
meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="RR", method="I")
meta1
##
## Identical results by using the following commands:
##
meta1
metagen(meta1$TE, meta1$seTE, sm="RR")
forest(metagen(meta1$TE, meta1$seTE, sm="RR"))
##
## Meta-analysis of survival data:
##
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm="HR")
Run the code above in your browser using DataLab