metagen(TE, seTE, studlab, data=NULL, subset=NULL, sm="",
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
hakn=FALSE,
method.tau="DL", tau.preset=NULL, TE.tau=NULL,
tau.common=FALSE,
prediction=FALSE, level.predict=level,
method.bias="linreg",
n.e=NULL, n.c=NULL,
title="", complab="", outclab="",
label.e="Experimental", label.c="Control",
label.left="", label.right="",
byvar, bylab, print.byvar=TRUE,
keepdata=TRUE, warn=TRUE)"RD", "RR", "OR", "AS",
"MD", "SMD"."DL", "REML", "ML", "HS", "SJ",
"HE", or "EB""rank", "linreg", or "mm", can
be abbreviated.TE).c("metagen", "meta") with corresponding
print, summary, plot function. The object is a
list containing the following components:"Inverse".hakn=TRUE).keepdata=TRUE).keepdata=TRUE). Internally, both fixed effect and random effects models are
calculated regardless of values choosen for arguments
comb.fixed and comb.random. Accordingly, the estimate
for the random effects model can be extracted from component
TE.random of an object of class "meta" even if
comb.random=FALSE. However, all functions in R package
meta will adequately consider the values for comb.fixed
and comb.random. E.g. function print.meta will
not print results for the random effects model if
comb.random=FALSE.
If R package metafor (Viechtbauer 2010) is installed, the following statistical methods are also available.
For the random effects model (argument comb.random=TRUE), the
method by Hartung and Knapp (Knapp, Hartung 2003) is used to adjust
test statistics and confidence intervals if argument
hakn=TRUE (internally R function rma.uni of R package
metafor is called).
Several methods are available to estimate the between-study variance
$\tau^2$ (argument method.tau):
method.tau="DL") (default)method.tau="REML")method.tau="ML")method.tau="HS")method.tau="SJ")method.tau="HE")method.tau="EB").rma.uni of R package metafor is called internally. See help
page of R function rma.uni for more details on the various
methods to estimate between-study variance $\tau^2$. A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction and
comb.random are TRUE.
R function update.meta can be used to redo the
meta-analysis of an existing metagen object by only specifying
arguments which should be changed.
Higgins JPT, Thompson SG, Spiegelhalter DJ (2009), A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172, 137-159.
Knapp G & Hartung J (2003), Improved Tests for a Random Effects Meta-regression with a Single Covariate. Statistics in Medicine, 22, 2693-2710, doi: 10.1002/sim.1482 .
Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta, metabin, metacont, print.metadata(Fleiss93)
meta1 <- metabin(event.e, n.e, event.c, n.c, data=Fleiss93, sm="RR", method="I")
meta1
##
## Identical results by using the following commands:
##
meta1
metagen(meta1$TE, meta1$seTE, sm="RR")
forest(metagen(meta1$TE, meta1$seTE, sm="RR"))
##
## Meta-analysis of survival data:
##
logHR <- log(c(0.95, 1.5))
selogHR <- c(0.25, 0.35)
metagen(logHR, selogHR, sm="HR")Run the code above in your browser using DataLab