data(Fleiss93cont)
## Add some (fictious) grouping variables:
Fleiss93cont$age <- c(55, 65, 55, 65, 55)
Fleiss93cont$region <- c("Europe", "Europe", "Asia",
"Asia", "Europe")
meta1 <- metacont(n.e, mean.e, sd.e,
n.c, mean.c, sd.c,
data=Fleiss93cont, sm="MD")
mu1 <- update(meta1, byvar=region)
mu2 <- update(meta1, byvar=region,
tau.common=TRUE, comb.fixed=FALSE)
## Warnings due to wrong ordering of arguments (order has changed with
## version 3.0-0 of R package meta)
##
##metareg(~region, meta1)
##metareg(~region, data=meta1)
## Warning as no information on covariate is available
##
##metareg(meta1)
## Do meta-regression for covariate region
## (see R code to create object mu2)
##
metareg(mu2)
## Same result for
## - tau-squared
## - test of heterogeneity
## - test for subgroup differences
## (as argument 'tau.common' was used to create mu2)
##
mu2
metareg(mu2)
metareg(meta1, ~region)
##
## Different result for
## - tau-squared
## - test of heterogeneity
## - test for subgroup differences
## (as argument 'tau.common' is - by default - FALSE)
##
mu1
## Do meta-regression with two covariates
##
metareg(mu1, ~region + age)
Run the code above in your browser using DataLab