
funnel(x, ...)radial(x, ...)
## S3 method for class 'default':
funnel(x, y,
xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL,
comb.fixed=FALSE, comb.random=FALSE,
axes=TRUE,
pch=21, text=NULL, cex=1,
lty.fixed=2, lty.random=9,
lwd=1, lwd.fixed=lwd, lwd.random=lwd,
col="black", bg="darkgray",
col.fixed="black", col.random="black",
log="", yaxis="se", sm=NULL,
contour.levels=NULL, col.contour,
ref=ifelse(backtransf & is.relative.effect(sm), 1, 0),
level=NULL,
studlab=FALSE, cex.studlab=0.8, backtransf=TRUE, ...)
## S3 method for class 'meta':
funnel(x,
xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL,
comb.fixed=x$comb.fixed, comb.random=x$comb.random,
axes=TRUE,
pch=if (!inherits(x, "trimfill")) 21 else ifelse(x$trimfill, 1, 21),
text=NULL, cex=1,
lty.fixed=2, lty.random=9,
lwd=1, lwd.fixed=lwd, lwd.random=lwd,
col="black", bg="darkgray",
col.fixed="black", col.random="black",
log="", yaxis="se",
contour.levels=NULL, col.contour,
ref=ifelse(backtransf & is.relative.effect(x$sm), 1, 0),
level=x$level,
studlab=FALSE, cex.studlab=0.8, backtransf=x$backtransf, ...)
## S3 method for class 'default':
radial(x, y, xlim=NULL, ylim=NULL,
xlab="Inverse of standard error",
ylab="Standardised treatment effect (z-score)",
comb.fixed=TRUE, axes=TRUE,
pch=1, text=NULL, cex=1, col=NULL,
level=NULL, ...)
## S3 method for class 'meta':
radial(x, xlim=NULL, ylim=NULL,
xlab="Inverse of standard error",
ylab="Standardised treatment effect (z-score)",
comb.fixed=TRUE, axes=TRUE,
pch=1, text=NULL, cex=1, col=NULL,
level=NULL, ...)
meta
, or estimated treatment
effect in individual studies.pch
in 21:25
).level
is
not NULL
).comb.fixed
is not NULL
).comb.random
is not NULL
)."x"
if the x-axis
is to be logarithmic, "y"
if the y-axis is to be logarithmic
and "xy"
or "yx"
if both axes are to be logarithmic
(applies only to function "se"
, "invvar"
, "invse"
, or "size"
(applies only to function funnel
)."RD"
, "RR"
, "OR"
, "AS"
, "MD"
,
"SMD"
(applies only to function funnel
).yaxis="size"
.x$TE
then).sm
equal to "OR"
,
"RR"
, "HR"
, or "IRR"
) should be back
transformed in funnel plots. If backtran
par
may also be
passed as arguments.comb.fixed
is TRUE, the pooled
estimate of the fixed effect model is plotted. If level
is not
NULL, the corresponding confidence limits are drawn.
In the funnel plot, if yaxis
is "se"
, the standard error
of the treatment estimates is plotted on the y-axis which is likely to
be the best choice (Sterne & Egger, 2001). Other possible choices for
yaxis
are "invvar"
(inverse of the variance),
"invse"
(inverse of the standard error), and "size"
(study size).
For yaxis!="size"
, contour-enhanced funnel plots can be
produced (Peters et al., 2008) by specifying the contour levels
(argument contour.levels
). By default (argument
col.contour
missing), suitable gray levels will be used to
distinguish the contours. Different colours can be chosen by argument
col.contour
.Galbraith RF (1988b), A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in Medicine, 7, 889--894. Light RJ & Pillemer DB (1984), Summing Up. The Science of Reviewing Research. Cambridge: Harvard University Press.
Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2008), Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. Journal of Clinical Epidemiology, 61, 991--996.
Sterne JAC & Egger M (2001), Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. Journal of Clinical Epidemiology, 54, 1046--1055.
metabias
, metabin
, metagen
data(Olkin95)
meta1 <- metabin(event.e, n.e, event.c, n.c,
data=Olkin95, subset=c(41,47,51,59),
studlab=paste(author, year),
sm="RR", method="I")
#
# Radial plot
#
radial(meta1, level=0.95)
oldpar <- par(mfrow=c(2, 2))
#
# Funnel plots
#
funnel(meta1)
#
# Same result as code above:
#
funnel(meta1$TE, meta1$seTE, sm="RR")
#
# Funnel plot with confidence intervals,
# fixed effect estimate and contours
#
cc <- funnel(meta1, comb.fixed=TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
legend(0.05, 0.05,
c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"), fill=cc)
#
# Contour-enhanced funnel plot with user-chosen colours
#
funnel(meta1, comb.fixed=TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99),
col.contour=c("darkgreen", "green", "lightgreen"),
lwd=2, cex=2, pch=16, studlab=TRUE, cex.studlab=1.25)
legend(0.05, 0.05,
c("0.1 > p > 0.05", "0.05 > p > 0.01", "< 0.01"),
fill=c("darkgreen", "green", "lightgreen"))
par(oldpar)
Run the code above in your browser using DataLab