data(Fleiss1993cont)
# Add some (fictitious) grouping variables:
#
Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "MD")
# Conduct two subgroup analyses
#
mu1 <- update(m1, subgroup = age, subgroup.name = "Age group")
mu2 <- update(m1, subgroup = region, subgroup.name = "Region")
# Combine subgroup meta-analyses and show forest plot with subgroup
# results
#
mb1 <- metabind(mu1, mu2)
mb1
forest(mb1)
# Use various estimation methods for between-study heterogeneity
# variance
#
m1.pm <- update(m1, method.tau = "PM")
m1.dl <- update(m1, method.tau = "DL")
m1.ml <- update(m1, method.tau = "ML")
m1.hs <- update(m1, method.tau = "HS")
m1.sj <- update(m1, method.tau = "SJ")
m1.he <- update(m1, method.tau = "HE")
m1.eb <- update(m1, method.tau = "EB")
# Combine meta-analyses and show results
#
taus <- c("Restricted maximum-likelihood estimator",
"Paule-Mandel estimator",
"DerSimonian-Laird estimator",
"Maximum-likelihood estimator",
"Hunter-Schmidt estimator",
"Sidik-Jonkman estimator",
"Hedges estimator",
"Empirical Bayes estimator")
#
m1.taus <- metabind(m1, m1.pm, m1.dl, m1.ml, m1.hs, m1.sj, m1.he, m1.eb,
name = taus, pooled = "random")
m1.taus
forest(m1.taus, print.I2 = FALSE, print.pval.Q = FALSE)
Run the code above in your browser using DataLab