# NOT RUN {
data(Becker94)
#### Fixed-effects model
## First stage analysis
fixed1 <- tssem1(Becker94$data, Becker94$n, method="FEM")
summary(fixed1)
## Prepare a regression model using create.mxMatrix()
A1 <- create.mxMatrix(c(0,0,0,"0.2*Spatial2Math",
0,0,"0.2*Verbal2Math",0,0), type="Full",
ncol=3, nrow=3, name="A1")
S1 <- create.mxMatrix(c("0.2*ErrorVarMath",0,0,1,
"0.2*CorBetweenSpatialVerbal",1),
type="Symm", name="S1")
## An alternative method to create a regression model with the lavaan syntax
model <- "## Regression model
SAT_Math ~ Spatial2Math*Spatial + Verbal2Math*SAT_Verbal
## Error variance of SAT_Math
SAT_Math ~~ ErrorVarMath*SAT_Math
## Variances of Spatial and SAT_Verbal fixed at 1.0
Spatial ~~ 1*Spatial
SAT_Verbal ~~ 1*SAT_Verbal
## Correlation between Spatial and SAT_Verbal
Spatial ~~ CorBetweenSpatialVerbal*SAT_Verbal"
RAM <- lavaan2RAM(model,
obs.variables=c("SAT_Math", "Spatial", "SAT_Verbal"))
RAM
A1 <- RAM$A
S1 <- RAM$S
## Second stage analysis
fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB")
summary(fixed2)
#### Fixed-effects model: with gender as cluster
## First stage analysis
cluster1 <- tssem1(Becker94$data, Becker94$n, method="FEM", cluster=Becker94$gender)
summary(cluster1)
## Second stage analysis
cluster2 <- tssem2(cluster1, Amatrix=A1, Smatrix=S1, intervals.type="LB")
summary(cluster2)
#### Conventional fixed-effects GLS approach
## First stage analysis
## No random effects
## Replicate Becker's (1992) analysis using 4 studies only
gls1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="REM", RE.type="Zero",
model.name="Fixed effects GLS Stage 1")
summary(gls1)
## Fixed-effects GLS model: Second stage analysis
gls2 <- tssem2(gls1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
model.name="Fixed effects GLS Stage 2")
summary(gls2)
# }
Run the code above in your browser using DataLab