# NOT RUN {
data(issp89)
#### Analysis of correlation structure in Cheung and Chan (2005)
#### Fixed-effects model: Stage 1 analysis
cor1 <- tssem1(issp89$data, issp89$n, method="FEM", cor.analysis=TRUE)
summary(cor1)
## Prepare a model implied matrix
## Factor correlation matrix
Phi <- create.mxMatrix( c("0.3*corf2f1","0.3*corf3f1","0.3*corf3f2"),
type="Stand", as.mxMatrix=FALSE )
## Error variances
Psi <- create.mxMatrix( paste("0.2*e", 1:9, sep=""), type="Diag",
as.mxMatrix=FALSE )
## Create Smatrix
S1 <- bdiagMat(list(Psi, Phi))
## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c(paste("x",1:9,sep=""),
## paste("f",1:3,sep=""))
## S1
S1 <- as.mxMatrix(S1)
## Factor loadings
Lambda <- create.mxMatrix( c(".3*f1x1",".3*f1x2",".3*f1x3",rep(0,9),
".3*f2x4",".3*f2x5",".3*f2x6",".3*f2x7",
rep(0,9),".3*f3x8",".3*f3x9"), type="Full",
ncol=3, nrow=9, as.mxMatrix=FALSE )
Zero1 <- matrix(0, nrow=9, ncol=9)
Zero2 <- matrix(0, nrow=3, ncol=12)
## Create Amatrix
A1 <- rbind( cbind(Zero1, Lambda),
Zero2 )
## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c(paste("x",1:9,sep=""),
## paste("f",1:3,sep=""))
## A1
A1 <- as.mxMatrix(A1)
## Create Fmatrix
F1 <- create.Fmatrix(c(rep(1,9), rep(0,3)))
#### Fixed-effects model: Stage 2 analysis
cor2 <- tssem2(cor1, Amatrix=A1, Smatrix=S1, Fmatrix=F1, intervals.type="LB")
summary(cor2)
## Display the model with the parameter estimates
plot(cor2, nDigits=1)
#### Analysis of covariance structure in Cheung and Chan (2009)
#### Fixed-effects model: Stage 1 analysis
cov1 <- tssem1(issp89$data, issp89$n, method="FEM", cor.analysis=FALSE)
summary(cov1)
#### Fixed-effects model: Stage 2 analysis
cov2 <- tssem2(cov1, Amatrix=A1, Smatrix=S1, Fmatrix=F1)
summary(cov2)
## Display the model with the parameter estimates
plot(cov2, nDigits=1)
# }
Run the code above in your browser using DataLab