Learn R Programming

metaSEM (version 1.2.4)

vcov: Extract Covariance Matrix Parameter Estimates from Objects of Various Classes

Description

It extracts the variance-covariance matrix of the parameter estimates from objects of various classes.

Usage

# S3 method for tssem1FEM
vcov(object, …)
# S3 method for tssem1FEM.cluster
vcov(object, …)
# S3 method for tssem1REM
vcov(object, select = c("all", "fixed", "random"), robust=FALSE, …)
# S3 method for wls
vcov(object, …)
# S3 method for wls.cluster
vcov(object, …)
# S3 method for meta
vcov(object, select = c("all", "fixed", "random"), robust=FALSE, …)
# S3 method for meta3X
vcov(object, select = c("all", "fixed", "random","allX"), robust=FALSE, …)
# S3 method for reml
vcov(object, …)
# S3 method for MxRAMModel
vcov(object, …)
# S3 method for osmasem
vcov(object, select=c("fixed", "all", "random"), robust=FALSE, …)

Arguments

object

An object returned from objects of various classes

select

Select all for both fixed- and random-effects parameters, fixed for the fixed-effects parameters or random for the random-effects parameters. For meta3X objects, allX is used to extract all parameters including the predictors and auxiliary variables.

robust

Logicial. Whether to use robust standard error from imxRobustSE.

Further arguments; currently none is used

Value

A variance-covariance matrix of the parameter estimates.

See Also

tssem1, wls, meta, reml

Examples

Run this code
# NOT RUN {
## Random-effects meta-analysis
model1 <- meta(y=yi, v=vi, data=Hox02)
vcov(model1)

## Fixed-effects only
vcov(model1, select="fixed")

## Random-effects only
vcov(model1, select="random")
# }

Run the code above in your browser using DataLab