# \donttest{
data(Becker09)
#### Fixed-effects model
## First stage analysis
fixed1 <- tssem1(Becker09$data, Becker09$n, method="FEM")
summary(fixed1)
## Prepare a regression model using create.mxMatrix()
A1 <- create.mxMatrix(c(0, "0.1*Cog2Per", "0.1*SO2Per", "0.1*SC2Per",
0, 0, 0, 0,
0, 0, 0, 0,
0, "0.1*Cog2SC", "0.1*SO2SC",0),
type="Full", byrow=TRUE, ncol=4, nrow=4,
as.mxMatrix=FALSE)
## This step is not necessary but it is useful for inspecting the model.
dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Performance", "Cognitive",
"Somatic", "Self_confidence")
## Display A1
A1
S1 <- create.mxMatrix(c("0.1*var_Per",
0, 1,
0, "0.1*cor", 1,
0, 0, 0, "0.1*var_SC"), byrow=TRUE, type="Symm",
as.mxMatrix=FALSE)
## This step is not necessary but it is useful for inspecting the model.
dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Performance", "Cognitive",
"Somatic", "Self_confidence")
## Display S1
S1
################################################################################
## Alternative model specification in lavaan model syntax
model <- "## Regression paths
Performance ~ Cog2Per*Cognitive + SO2Per*Somatic + SC2Per*Self_confidence
Self_confidence ~ Cog2SC*Cognitive + SO2SC*Somatic
## Fix the variances of Cog and SO at 1
Cognitive ~~ 1*Cognitive
Somatic ~~ 1*Somatic
## Label the correlation between Cog and SO
Cognitive ~~ cor*Somatic
## Label the error variances of Per and SC
Performance ~~ var_Per*Performance
Self_confidence ~~ var_SC*Self_confidence"
## Display the model
plot(model, layout="spring")
RAM <- lavaan2RAM(model, obs.variables=c("Performance", "Cognitive",
"Somatic", "Self_confidence"))
RAM
A1 <- RAM$A
S1 <- RAM$S
################################################################################
## Second stage analysis
fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,
intervals.type="LB", model.name="TSSEM2 Becker09",
mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),
SO=mxAlgebra(SO2SC*SC2Per, name="SO"),
Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per,
name="Cog_SO")) )
summary(fixed2)
## Display the model with the parameter estimates
plot(fixed2, layout="spring")
#### Fixed-effects model: with type of sport as cluster
## First stage analysis
cluster1 <- tssem1(Becker09$data, Becker09$n, method="FEM",
cluster=Becker09$Type_of_sport)
summary(cluster1)
## Second stage analysis
cluster2 <- tssem2(cluster1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,
intervals.type="LB", model.name="TSSEM2 Becker09",
mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),
SO=mxAlgebra(SO2SC*SC2Per, name="SO"),
Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per,
name="Cog_SO")) )
summary(cluster2)
## Convert the model to semPlotModel object with 2 plots
## Use the short forms of the variable names
my.plots <- lapply(X=cluster2, FUN=meta2semPlot, manNames=c("Per","Cog","SO","SC") )
## Load the library
library("semPlot")
## Setup two plots
layout(t(1:2))
## The labels are overlapped. We may modify it by using layout="spring"
semPaths(my.plots[[1]], whatLabels="est", nCharNodes=10, color="orange",
layout="spring", edge.label.cex=0.8)
title("Individual sport")
semPaths(my.plots[[2]], whatLabels="est", nCharNodes=10, color="skyblue",
layout="spring", edge.label.cex=0.8)
title("Team sport")
#### Random-effects model
## First stage analysis
random1 <- tssem1(Becker09$data, Becker09$n, method="REM", RE.type="Diag")
summary(random1)
## Second stage analysis
random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE,
intervals.type="LB", model.name="TSSEM2 Becker09",
mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"),
SO=mxAlgebra(SO2SC*SC2Per, name="SO"),
Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per,
name="Cog_SO")) )
summary(random2)
## Display the model
plot(random2, what="path", layout="spring")
## Display the model with the parameter estimates
plot(random2, layout="spring", color="yellow")
#### Univariate r approach
#### First stage of the analysis
uni1 <- uniR1(Becker09$data, Becker09$n)
uni1
#### Second stage of analysis using OpenMx
model2 <- "## Regression paths
Performance ~ Cog2Per*Cognitive + SO2Per*Somatic + SC2Per*Self_confidence
Self_confidence ~ Cog2SC*Cognitive + SO2SC*Somatic
## Provide starting values for Cog and SO
Cognitive ~~ start(1)*Cognitive
Somatic ~~ start(1)*Somatic
## Label the correlation between Cog and SO
Cognitive ~~ cor*Somatic
## Label the error variances of Per and SC
Performance ~~ var_Per*Performance
Self_confidence ~~ var_SC*Self_confidence"
RAM2 <- lavaan2RAM(model2, obs.variables=c("Performance", "Cognitive",
"Somatic", "Self_confidence"))
RAM2
uni2mx <- uniR2mx(uni1, RAM=RAM2)
summary(uni2mx)
#### Second stage of analysis Using lavaan
model3 <- "## Regression paths
Performance ~ Cognitive + Somatic + Self_confidence
Self_confidence ~ Cognitive + Somatic"
uni2lavaan <- uniR2lavaan(uni1, model3)
lavaan::summary(uni2lavaan)
# }
Run the code above in your browser using DataLab