# \donttest{
#### TSSEM
## Set seed for replicability
set.seed(23891)
## Table A1
randA1a <- tssem1(Nohe15A1$data, Nohe15A1$n, method="REM", RE.type="Diag")
summary(randA1a)
model1 <- 'W2 ~ w2w*W1 + s2w*S1
S2 ~ w2s*W1 + s2s*S1
W1 ~~ w1WITHs1*S1
W2 ~~ w2WITHs2*S2
W1 ~~ 1*W1
S1 ~~ 1*S1
W2 ~~ Errw2*W2
S2 ~~ Errs2*S2'
## Display the model
plot(model1, layout="spring")
RAM1 <- lavaan2RAM(model1, obs.variables=c("W1", "S1", "W2", "S2"))
RAM1
randA1b <- tssem2(randA1a, Amatrix=RAM1$A, Smatrix=RAM1$S)
summary(randA1b)
## Display the model with the parameter estimates
plot(randA1b, layout="spring")
## Table A2
randA2a <- tssem1(Nohe15A2$data, Nohe15A2$n, method="REM", RE.type="Diag")
## Rerun to remove error code
randA2a <- rerun(randA2a)
summary(randA2a)
model2 <- 'F2 ~ f2f*F1 + s2F*S1
S2 ~ f2s*F1 + s2s*S1
F1 ~~ f1WITHs1*S1
F2 ~~ f2WITHs2*S2
F1 ~~ 1*F1
S1 ~~ 1*S1
F2 ~~ Errf2*F2
S2 ~~ Errs2*S2'
## Display the model
plot(model2, layout="spring")
RAM2 <- lavaan2RAM(model2, obs.variables=c("F1", "S1", "F2", "S2"))
RAM2
randA2b <- tssem2(randA2a, Amatrix=RAM2$A, Smatrix=RAM2$S)
summary(randA2b)
## Display the model with the parameter estimates
plot(randA2b, layout="spring")
## Estimate the heterogeneity of the parameter estimates
tssemParaVar(randA1a, randA2b)
## Parametric bootstrap based on Yu et al. (2016)
## I assume that you know what you are doing!
## Set seed for reproducibility
set.seed(39128482)
## Average the correlation coefficients with the univariate-r approach
uni1 <- uniR1(Nohe15A1$data, Nohe15A1$n)
uni1
## Generate random correlation matrices
boot.cor <- bootuniR1(uni1, Rep=50)
## Display the quality of the generated correlation matrices
summary(boot.cor)
## Proposed saturated model
model1 <- 'W2 + S2 ~ W1 + S1'
## Use the harmonic mean of the sample sizes as n in SEM
n <- uni1$n.harmonic
boot.fit1 <- bootuniR2(model=model1, data=boot.cor, n=n)
summary(boot.fit1)
## Proposed model with equal regression coefficients
model2 <- 'W2 ~ Same*W1 + Cross*S1
S2 ~ Cross*W1 + Same*S1'
boot.fit2 <- bootuniR2(model=model2, data=boot.cor, n=n)
summary(boot.fit2)
#### OSMASEM
## Calculate the sampling variance-covariance matrix of the correlation matrices.
my.df <- Cor2DataFrame(Nohe15A1)
## Standardize the moderator "Lag"
my.df$data$Lag <- scale(my.df$data$Lag)
head(my.df$data)
## Proposed model
model1 <- 'W2 ~ w2w*W1 + s2w*S1
S2 ~ w2s*W1 + s2s*S1
W1 ~~ w1WITHs1*S1
W2 ~~ w2WITHs2*S2
W1 ~~ 1*W1
S1 ~~ 1*S1
W2 ~~ Errw2*W2
S2 ~~ Errs2*S2'
plot(model1)
## Convert it into RAM specification
RAM1 <- lavaan2RAM(model1, obs.variables=c("W1", "S1", "W2", "S2"))
RAM1
## Create vechs of the model implied correlation matrix
## with implicit diagonal constraints
## M0 <- create.vechsR(A0=RAM1$A, S0=RAM1$S)
## Create heterogeneity variances
## RE.type= either "Diag" or "Symm"
##
## Transform= either "expLog" or "sqSD" for better estimation on variances
## T0 <- create.Tau2(RAM=RAM1, RE.type="Diag")
##
## Fit the model
## fit0 <- osmasem(model.name="No moderator", Mmatrix=M0, Tmatrix=T0, data=my.df)
## Fit the model
fit0 <- osmasem(model.name="No moderator", RAM=RAM1, data=my.df)
summary(fit0)
## Get the SRMR
osmasemSRMR(fit0)
## Get the transformed variance component of the random effects
VarCorr(fit0)
## "lag" as a moderator on A matrix
A1 <- matrix(c(0,0,0,0,
0,0,0,0,
"0*data.Lag","0*data.Lag",0,0,
"0*data.Lag","0*data.Lag",0,0),
nrow=4, ncol=4, byrow=TRUE)
## M1 <- create.vechsR(A0=RAM1$A, S0=RAM1$S, Ax=A1)
##
## Fit the nodel
## fit1 <- osmasem(model.name="Lag as a moderator for Amatrix", Mmatrix=M1,
## Tmatrix=T0, data= my.df)
fit1 <- osmasem(model.name="Lag as a moderator for Amatrix",
RAM=RAM1, Ax=A1, data= my.df)
summary(fit1)
VarCorr(fit1)
## Compare the models with and without the moderator "lag"
anova(fit1, fit0)
## Calculate the R2
osmasemR2(fit0, fit1)
# }
Run the code above in your browser using DataLab