set.seed(100)
## A one-factor CFA model
model <- "f =~ 0.3*x1 + 0.4*x2 + 0.5*x3
f ~~ 1*f"
RAM <- lavaan2RAM(model)
impliedR(RAM, corr=TRUE)
## A simple mediation model
## All are population parameters in the A matrix
A1 <- matrix(c(0, 0, 0,
0.3, 0, 0,
0.2, 0.4, 0), nrow=3, ncol=3, byrow=TRUE,
dimnames=list(c("x", "m", "y"), c("x", "m", "y")))
A1
## Variance of x is fixed at 1 while the other variances are free.
S1 <- matrix(c(1, 0, 0,
0, "0.1*ErrVarM",0,
0, 0, "0.1*ErrVarY"), nrow=3, ncol=3,
dimnames=list(c("x", "m", "y"), c("x", "m", "y")))
S1
impliedR(Amatrix=A1, Smatrix=S1)
## SD of A1
A1SD <- matrix(c(0, 0, 0,
0.1, 0, 0,
0.1, 0.1, 0), nrow=3, ncol=3, byrow=TRUE,
dimnames=list(c("x", "m", "y"), c("x", "m", "y")))
A1SD
rimpliedR(Amatrix=A1, Smatrix=S1, AmatrixSD=A1SD, k=2)
## A CFA model
A2 <- matrix(c(0, 0, 0, 0.3,
0, 0, 0, 0.4,
0, 0, 0, 0.5,
0, 0, 0, 0), nrow=4, ncol=4, byrow=TRUE,
dimnames=list(c("x1", "x2", "x3", "f"),
c("x1", "x2", "x3", "f")))
A2
## Variance of f is fixed at 1 while the other variances are free.
S2 <- matrix(c("0.7*Err1", 0, 0, 0,
0, "0.7*Err2", 0, 0,
0, 0, "0.7*Err3", 0,
0, 0, 0, 1), nrow=4, ncol=4,
dimnames=list(c("x1", "x2", "x3", "f"), c("x1", "x2", "x3", "f")))
S2
F2 <- create.Fmatrix(c(1,1,1,0), as.mxMatrix=FALSE)
F2
## Model implied correlation matrix
impliedR(Amatrix=A2, Smatrix=S2, Fmatrix=F2, corr=TRUE)
## Model implied covariance matrix
impliedR(Amatrix=A2, Smatrix=S2, Fmatrix=F2, corr=FALSE)
## SD of A2
A2SD <- matrix(c(0, 0, 0, 0.1,
0, 0, 0, 0.1,
0, 0, 0, 0.1,
0, 0, 0, 0), nrow=4, ncol=4, byrow=TRUE,
dimnames=list(c("x1", "x2", "x3", "f"),
c("x1", "x2", "x3", "f")))
A2SD
## SD of S2: correlated between x1 and x2
S2SD <- matrix(c(0, 0.1, 0, 0,
0.1, 0, 0, 0,
0, 0, 0, 0.1,
0, 0, 0, 0), nrow=4, ncol=4, byrow=TRUE,
dimnames=list(c("x1", "x2", "x3", "f"),
c("x1", "x2", "x3", "f")))
S2SD
rimpliedR(Amatrix=A2, Smatrix=S2, Fmatrix=F2, AmatrixSD=A2SD,
SmatrixSD=S2SD, k=2)
Run the code above in your browser using DataLab