### load data
data(dat.collins1985a)
### calculate (log) odds ratio and sampling variance
dat <- escalc(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti,
data=dat.collins1985a, to="all")
summary(dat, digits=2, transf=exp)
### meta-analysis of log odds ratios using Peto's method
res <- rma.peto(ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat.collins1985a)
summary(res)
### meta-analysis of log odds ratios using conditional logistic regression model
res <- rma.glmm(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti,
data=dat.collins1985a, model="CM.EL", method="FE")
summary(res)
### plot the log-likelihoods of the odds ratios
llplot(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat.collins1985a,
lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE)
### meta-analysis of log odds ratios using conditional logistic regression model
res <- rma.glmm(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti,
data=dat.collins1985a, model="CM.EL", method="ML")
summary(res)
Run the code above in your browser using DataLab