fsn(yi, vi, sei, weights, data, type="Rosenthal", alpha=.05, target, subset, digits=4)
"Rosenthal"
, "Orwin"
, or "Rosenberg"
. See below for more details."fsn"
. The object is a list containing the following components:NA
for the Orwin method.NA
for the Rosenthal method.NA
for the Rosenthal and Rosenberg methods.print.fsn
function.yi
argument and the corresponding sampling variances via the vi
argument (instead of specifying vi
, one can specify the standard errors (the square root of the sampling variances) via the sei
argument or the inverse of the sampling variances via the weights
argument). The escalc
function can be used to compute a wide variety of effect size and outcome measures (and the corresponding sampling variances) based on summary statistics.
The Rosenthal method (sometimes called a ranktest
, regtest
, trimfill
### load BCG vaccine data
data(dat.bcg)
### calculate log relative risks and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
fsn(yi, vi, data=dat)
fsn(yi, vi, data=dat, type="Orwin")
fsn(yi, vi, data=dat, type="Rosenberg")
Run the code above in your browser using DataLab