transf.rtoz(xi, ...)
transf.ztor(xi, ...)
transf.logit(xi, ...)
transf.ilogit(xi, ...)
transf.arcsin(xi, ...)
transf.iarcsin(xi, ...)
transf.pft(xi, ni, ...)
transf.ipft(xi, ni, ...)
transf.ipft.hm(xi, targs, ...)
transf.isqrt(xi, ...)
transf.irft(xi, ti, ...)
transf.iirft(xi, ti, ...)
transf.ahw(xi, ...)
transf.iahw(xi, ...)
transf.abt(xi, ...)
transf.iabt(xi, ...)
transf.ztor.int(xi, targs, ...)
transf.exp.int(xi, targs, ...)
transf.ilogit.int(xi, targs, ...)transf.rtoz: Fisher's r-to-z transformation.transf.ztor: inverse of the Fisher's r-to-z transformation.transf.logit: logit (log odds) transformation.transf.ilogit: inverse of the logit transformation.transf.arcsin: arcsine transformation.transf.iarcsin: inverse of the arcsine transformation.transf.pft: Freeman-Tukey (double arcsine) transformation for proportions. See Freeman & Tukey (1950). Thexiargument is used to specify the proportions and theniargument the corresponding sample sizes.transf.ipft: inverse of the Freeman-Tukey (double arcsine) transformation for proportions. See Miller (1978).transf.ipft.hm: inverse of the Freeman-Tukey (double arcsine) transformation for proportions using the harmonic mean of the sample sizes for the back-transformation. See Miller (1978). The sample sizes are specified via thetargsargument (the list element should be calledni).transf.isqrt: inverse of the square-root transformation (i.e., function to square a number).transf.irft: Freeman-Tukey transformation for incidence rates. See Freeman & Tukey (1950). Thexiargument is used to specify the incidence rates and thetiargument the corresponding person-time at risk.transf.iirft: inverse of the Freeman-Tukey transformation for incidence rates.transf.ahw: Transformation of coefficient alpha as suggested by Hakstian & Whalen (1976).transf.iahw: Inverse of the transformation of coefficient alpha as suggested by Hakstian & Whalen (1976).transf.abt: Transformation of coefficient alpha as suggested by Bonett (2002).transf.iabt: Inverse of the transformation of coefficient alpha as suggested by Bonett (2002).transf.ztor.int: integral transformation method for the z-to-r transformation.transf.exp.int: integral transformation method for the exponential transformation.transf.ilogit.int: integral transformation method for the inverse of the logit transformation.targs$lower and targs$upper, where $f(z)$ is the density of a normal distribution with mean equal to xi and variance equal to targs$tau2. An example is provided below.### load BCG vaccine data
data(dat.bcg)
### meta-analysis of the log relative risks using a random-effects model
res <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg,
measure="RR", data=dat.bcg, method="REML")
### average relative risk with 95\% CI
predict(res, transf=exp)
### average relative risk with 95\% CI using the integral transformation
predict(res, transf=transf.exp.int, targs=list(tau2=res$tau2, lower=-4, upper=4))Run the code above in your browser using DataLab