### load BCG vaccine data
data(dat.bcg)
### meta-analysis of the log relative risks using the Mantel-Haenszel method
res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
slab=paste(author, year, sep=", "))
### forest plot of the observed relative risks with summary estimate
forest(res, atransf=exp, xlim=c(-7,5), ylim=c(-2.5,16))
### meta-analysis of the log relative risks using a random-effects model
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### add summary estimate from the random-effects model to forest plot
addpoly(res, atransf=exp)
### forest plot with subgrouping of studies and summaries per subgroup
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
slab=paste(author, year, sep=", "))
forest(res, xlim=c(-16, 6), at=log(c(.05, .25, 1, 4)), atransf=exp,
ilab=cbind(dat.bcg$tpos, dat.bcg$tneg, dat.bcg$cpos, dat.bcg$cneg),
ilab.xpos=c(-9.5,-8,-6,-4.5), cex=.75, ylim=c(-1, 27),
order=order(dat.bcg$alloc), rows=c(3:4,9:15,20:23),
mlab="RE Model for All Studies")
op <- par(cex=.75, font=4)
text(-16, c(24,16,5), c("Systematic Allocation", "Random Allocation",
"Alternate Allocation"), pos=4)
par(font=2)
text(c(-9.5,-8,-6,-4.5), 26, c("TB+", "TB-", "TB+", "TB-"))
text(c(-8.75,-5.25), 27, c("Vaccinated", "Control"))
text(-16, 26, "Author(s) and Year", pos=4)
text(6, 26, "Relative Risk [95% CI]", pos=2)
par(op)
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
subset=(alloc=="systematic"))
addpoly(res, row=18.5, cex=.75, atransf=exp, mlab="RE Model for Subgroup")
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
subset=(alloc=="random"))
addpoly(res, row=7.5, cex=.75, atransf=exp, mlab="RE Model for Subgroup")
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg,
subset=(alloc=="alternate"))
addpoly(res, row=1.5, cex=.75, atransf=exp, mlab="RE Model for Subgroup")
Run the code above in your browser using DataLab