rma.uni function. Confidence intervals for the model coefficients can also be obtained.## S3 method for class 'rma.uni':
confint(object, parm, level, fixed=FALSE, random=TRUE,
digits, verbose=FALSE, control, \dots)
## S3 method for class 'rma.mh':
confint(object, parm, level, digits, \dots)
## S3 method for class 'rma.peto':
confint(object, parm, level, digits, \dots)
## S3 method for class 'rma.glmm':
confint(object, parm, level, digits, \dots)
## S3 method for class 'rma.mv':
confint(object, parm, level, digits, \dots)"rma.uni", "rma.mh", or "rma.peto". The method is not yet implemented for objects of class "rma.glmm" or "rma.mv".confint, but is ignored.FALSE).TRUE).FALSE). See "confint.rma". The object is a list with either one or two elements (named fixed and random) with the following elements:NA, but the confidence interval bounds are still provided (but they are essentially meaningless for fixed-effects models).
The results are formated and printed with the print.confint.rma function.method="GENQ", the former is used in all other cases. Either method provides an exact confidence interval for rma.uni, rma.mh, rma.peto, rma.glmm### load BCG vaccine data
data(dat.bcg)
### meta-analysis of the log relative risks using a random-effects model
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### confidence interval for the total amount of heterogeneity
confint(res)
### mixed-effects model with absolute latitude in the model
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg,
mods = ~ ablat, data=dat.bcg)
### confidence interval for the residual amount of heterogeneity
confint(res)Run the code above in your browser using DataLab