rma.uni
function. Confidence intervals for the model coefficients can also be obtained.## S3 method for class 'rma.uni':
confint(object, parm, level, fixed=FALSE, random=TRUE,
digits, verbose=FALSE, control, \dots)
## S3 method for class 'rma.mh':
confint(object, parm, level, digits, \dots)
## S3 method for class 'rma.peto':
confint(object, parm, level, digits, \dots)
## S3 method for class 'rma.glmm':
confint(object, parm, level, digits, \dots)
## S3 method for class 'rma.mv':
confint(object, parm, level, digits, \dots)
"rma.uni"
, "rma.mh"
, or "rma.peto"
. The method is not yet implemented for objects of class "rma.glmm"
or "rma.mv"
.confint
, but is ignored.FALSE
).TRUE
).FALSE
). See "confint.rma"
. The object is a list with either one or two elements (named fixed
and random
) with the following elements:NA
, but the confidence interval bounds are still provided (but they are essentially meaningless for fixed-effects models).
The results are formated and printed with the print.confint.rma
function.method="GENQ"
, the former is used in all other cases. Either method provides an exact confidence interval for rma.uni
, rma.mh
, rma.peto
, rma.glmm
### load BCG vaccine data
data(dat.bcg)
### meta-analysis of the log relative risks using a random-effects model
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### confidence interval for the total amount of heterogeneity
confint(res)
### mixed-effects model with absolute latitude in the model
res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg,
mods = ~ ablat, data=dat.bcg)
### confidence interval for the residual amount of heterogeneity
confint(res)
Run the code above in your browser using DataLab