Learn R Programming

metafor (version 1.9-4)

cumul: Cumulative Meta-Analysis for 'rma' Objects

Description

The functions repeatedly fit the specified model, adding one observation/study at a time to the model.

Usage

cumul(x, ...)

## S3 method for class 'rma.uni':
cumul(x, order, digits, transf, targs, \dots)
## S3 method for class 'rma.mh':
cumul(x, order, digits, transf, targs, \dots)
## S3 method for class 'rma.peto':
cumul(x, order, digits, transf, targs, \dots)

Arguments

x
an object of class "rma.mh", "rma.peto", "rma.uni".
order
optional vector with indices giving the desired order for the cumulative meta-analysis.
digits
integer specifying the number of decimal places to which the printed results should be rounded (if unspecified, the default is to take the value from the object).
transf
optional argument specifying the name of a function that should be used to transform the model coefficients and interval bounds (e.g., transf=exp). If unspecified, no transformation is used.
targs
optional arguments needed by the function specified under transf.
...
other arguments.

Value

  • An object of class c("list.rma","cumul.rma"). The object is a list containing the following components:
  • estimateestimated coefficients of the model.
  • sestandard errors of the coefficients.
  • zvaltest statistics of the coefficients.
  • pvalp-values for the test statistics.
  • ci.lblower bounds of the confidence intervals for the coefficients.
  • ci.ubupper bounds of the confidence intervals for the coefficients.
  • QEtest statistics for the tests of heterogeneity.
  • QEpp-values for the tests of heterogeneity.
  • tau2estimated amounts of (residual) heterogeneity (only for random-effects models).
  • I2values of latex{$I^2$}html{$I²$}text{$I^2$} (only for random-effects models).
  • H2values of latex{$H^2$}html{$H²$}text{$H^2$} (only for random-effects models).
  • The object is formated and printed with print.list.rma. A forest plot showing the results from the cumulative meta-analysis can be obtained with forest.cumul.rma.

Details

For "rma.uni" objects, the model specified by x must be a model without moderators (i.e., either a fixed- or a random-effects model).

References

Chalmers, T. C., & Lau, J. (1993). Meta-analytic stimulus for changes in clinical trials. Statistical Methods in Medical Research, 2, 161--172. Lau, J., Schmid, C. H., & Chalmers, T. C. (1995). Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care. Journal of Clinical Epidemiology, 48, 45--57. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1--48. http://www.jstatsoft.org/v36/i03/.

See Also

forest.cumul.rma

Examples

Run this code
### load BCG vaccine data
data(dat.bcg)

### calculate log relative risks and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)

### random-effects model
res <- rma(yi, vi, data=dat)

### cumulative meta-analysis (in the order of publication year)
cumul(res, transf=exp, order=order(dat$year))

### meta-analysis of the (log) relative risks using the Mantel-Haenszel method
res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)

### cumulative meta-analysis
cumul(res, order=order(dat.bcg$year))
cumul(res, order=order(dat.bcg$year), transf=TRUE)

### meta-analysis of the (log) odds ratios using Peto's method
res <- rma.mh(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)

### cumulative meta-analysis
cumul(res, order=order(dat.bcg$year))
cumul(res, order=order(dat.bcg$year), transf=TRUE)

Run the code above in your browser using DataLab